
AUGUST 2004 VOLUME:9 ISSUE:8

No. 1 i-Technology Magazine in the World

T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E W W W . S Y S - C O N . C O M / J D J

THE NETWORK EFFECT: J2EE AND .NET PG 66

PLUS...RETAILERS PLEASE DISPLAY
UNTIL OCTOBER 31, 2004

AUGUST 2004 VOLUME:9 ISSUE: VOLUME:9 ISSUE: VOLUME:9 ISSUE: VOLUME:9 ISSUE:8

 Feature: Using Apache CactusT ting server-side

 components

 page 28

Unlocking Microsoft
Office Documents

Walking the Tightrope of
Microsoft-Java Interoperability
The Blind Men, the Elephant,
and App Server Migration

Embedding the Java Virtual Machine,
Once and for All
Web Conferencing Using the
Java Media Framework

Dynamic Sorting with Java

Copyright © 2004, Oracle Corporation. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Database 10g
 Application Server 10g

Oracle Platform

Engineered to work together

oracle.com/platform
or call 1.800.633.0753

Common LDAP directory

Unified security model

Common administration

Automated space management

3August 2004www.SYS-CON.com/JDJ

ver since Nicholas G. Carr’s
now historic Harvard Business
Review article, “IT Doesn’t Mat-
ter,” published in the May 2003

edition of HBR, it was only a matter of
time before the wider world caught up
with Carr’s thesis. The article formed
only a small part of Carr’s broader ex-
ploration of the influence of informa-
tion technology on business strategy
contained in his book Does IT Matter?
Information Technology and the Cor-
rosion of Competitive Advantage, but it
is the “IT Doesn’t Matter” chapter that
sticks in everybody’s mind.
 In it, Carr argued that while IT
infrastructure is essential to competi-
tiveness, particularly at the regional and
industry level, it’s no longer a source
of advantage at the company level. In
other words, it doesn’t enable individual
companies to distinguish themselves in
a meaningful way from their competi-
tors. While essential to competitiveness,
argued Carr, IT has become inconse-
quential to strategic advantage. IT is
best viewed (and managed) nowadays,
he concluded, as a commodity.
 Of course he never truly meant that
IT “didn’t matter”; he merely wanted the
business community to understand that
it could no longer rely on it as a source
of competitive advantage.
 Now that the JavaOne techfest has
come and gone, but with the Linux-
World Expo still to come, everyone and
his dog is naturally busy commenting,
interpreting, opining, and dissecting…
so at JDJ we thought it might be useful
to do a round-up of some of what is
being said about the state of technology,
the Internet, e-commerce, and all things
related. We will publish them in next
month’s issue. Already we can reveal
that one thing emerges above all else:
technology is back – most especially
Internet technologies such as search,
storage, and security. It is these three
items together that are putting the “i”
back into i-technology in a big way.
 How else can you explain why the
(possible) market value of Google,

Inc., seems likely to be as high as $36
billion, rivaling corporate IT stalwarts
such as McDonald’s Corp. and Sony
Corp? Search is still very much the new
frontier so far as the Internet is con-
cerned. How else can you account for
the growth of storage giants like EMC
and security giants like Cisco, which as
long ago as 2000 was being labeled “the
quiet security giant” as the undisputed
king of switches and routers began
rapidly to make a name for itself in the
security arena?
 Without the Internet and the tech-
nologies related to it there would be no
U.S. stock market uptick in process. So
Bill Gates didn’t really need to launch
the broadside he did in his speech at
Microsoft’s CEO Summit on May 21 last
year:

 And so when somebody says, to take
the extreme quote from the Harvard
Business Review article, they say IT
doesn’t matter, they must be saying that
with all this information flow, we’ve
either achieved a limit where it’s just
perfect, everybody sees exactly what they
want, or we’ve gotten to a point where
it simply can’t be improved – and that’s
where we’d object very strenuously.

 Because that wasn’t ever Carr’s
point. What his HBR article was argu-
ing was that we’re at the stage in the
business/technology cycle where any
technological improvement in the
management of information will be
quickly and broadly copied, rendering
it meaningless for competitive advan-
tage. Not that information technology,
the Internet, and all kindred phenom-
ena no longer matter. Far less that
improvement is no longer possible.
Software developers everywhere – and
CIOs, CTOs, and CSOs too – certainly
think it matters, perhaps more than
ever. Just as Gates does, and Messrs.
McNealy, Ellison, Dell, and Palmisano.
That is why the “i” is so firmly back in
i-technology. And why, in turn, the “P”
is back in IPO.

From the Group Publisher

Putting the ‘i’
Back in i-Technology

 Editorial Board
 Desktop Java Editor: Joe Winchester
 Core and Internals Editor: Calvin Austin
 Contributing Editor: Ajit Sagar
 Contributing Editor: Yakov Fain
 Contributing Editor: Bill Roth
 Contributing Editor: Bill Dudney
 Contributing Editor: Michael Yuan
 Founding Editor: Sean Rhody

Production
 Production Consultant: Jim Morgan
 Associate Art Director: Tami Beatty–Lima
 Executive Editor: Nancy Valentine
 Associate Editors: Jamie Matusow
 Gail Schultz
 Jennifer Van Winckel
 Assistant Editor: Torrey Gaver
 Online Editor: Lin Goetz
 Research Editor: Bahadir Karuv, PhD

Writers in This Issue
Ryan Ackley, Calvin Austin, York Davis,

Jeremy Geelan, Ted Goddard, Gunnar Grim,
Rob Halleron, Michael Havey, Pramod Jain,

Yayati Kasralikar, Kishore Kumar, Heman Robinson,
Ajit Sagar, Avik Sengupta, Derek Spratt,

Stanley Wang, Joe Winchester
To submit a proposal for an article, go to

http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send

your letters to Subscription Department subscribe@sys-con.
com. Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)
Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or

Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly

(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2004 by SYS-CON Publications, Inc. All rights reserved. No

part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including

photocopy or any information storage and retrieval system, without
written permission. For promotional reprints, contact reprint

coordinator Kristin Kuhnle, kristin@sys-con.com. SYS-CON Media and
SYS-CON Publications, Inc., reserve the right to revise, republish and

authorize its readers to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Newsstand Distribution Consultant
Brian J. Gregory/Gregory Associates/W.R.D.S.

732 607-9941, BJGAssociates@cs.com

 Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

Jeremy Geelan is

group publisher of

SYS-CON Media, and

is responsible for the

development of new

titles and technology

portals for the

firm. He regularly

represents SYS-CON at

conferences and trade

shows, speaking to

technology audiences

both in North America

and overseas.

jeremy@sys-con.com

Jeremy Geelan

E

 Java
 Design Patterns
 for Long Lists
 Providing fast performance

Try a better database. For free.
Download a free, fully-functional, non-expiring version of Caché or request it on CD at www.InterSystems.com/match6

© 2004 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 7-04

Relational
database

Object-oriented
development

GET THE RIGHT BACK-END
FOR YOUR FRONT-END

are massively scalable and lightning fast. They
require little or no database administration. And
Caché’s powerful Web application development
environment dramatically reduces the time to
build and modify applications.

We are InterSystems, a specialist in data
management technology for over twenty-six
years. We provide 24x7 support to four million
users in 88 countries. Caché powers enterprise
applications in healthcare, financial services,
government, and many other sectors. Caché is
available for Windows, OpenVMS, Linux, and
major UNIX platforms – and it is deployed on
systems ranging from two to over 10,000
simultaneous users.

If your back-end database isn't a good match
for your front-end development, you need a new
database.

Caché, the post-relational database from
InterSystems, combines high-performance SQL
for faster queries and an advanced object database
for rapidly storing and accessing objects. With
Caché, no mapping is required between object
and relational views of data. Every Caché class can
be automatically projected as Java classes or EJB
components with bean-managed persistence. Plus,
every object class is instantly accessible as tables
via ODBC and JDBC.

That means huge savings in both development
and processing time. Applications built on Caché

5August 2004

AUGUST 2004 VOLUME:9 ISSUE:8

contents
JDJ Cover Story

 Java
 Design Patterns
 for Long Lists
 Providing fast performance 44

Using Apache Cactus
by Kishore Kumar

28

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offices. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

Features

FROM THE GROUP PUBLISHER

Putting the ‘i’ Back into
i-Technology
by Jeremy Geelan.................................3

VIEWPOINT

Walking the Tightrope of
Microsoft-Java Interoperability
by Derek Spratt.................................6

JAVA ENTERPRISE VIEWPOINT

The Blind Men, the Elephant,
and App Server Migration
by Ajit Sagar.................................8

VIDEO/AUDIO

Web Conferencing Using the
Java Media Framework
Broadcast and receive media streams
by Yayati Kasralikar and Pramod Jain.................................18

DOI

A GUI Painter Friendly
Table Component
The principle of the column container
by Gunnar Grim.................................48

POI

Unlocking Microsoft
Office Documents
An open source alternative
by Ryan Ackley and Avik Sengupta.................................52

LABS

VERITAS i3 for J2EE
Reviewed by Rob Halleron.................................60

PRESSROOM

Industry News
JDJ News Desk.................................64

@ THE BACKPAGE

Unified Diversity
by Ted Goddard.................................66

CORE AND INTERNALS VIEWPOINT

A Tail of Two Tigers
by Calvin Austin.................................26

INTERFACES

Dynamic Sorting with Java
A reusable implementation
by York Davis.................................32

JNI

Calling Java from C
A framework for easier JNI
by Michael Havey.................................36

DESKTOP JAVA VIEWPOINT

Swing Low, Swing High,
Sweet Desktop
by Joe Winchester.................................42

Embedding the Java Virtual
Machine, Once and for All

by Stanley Wang

10
by Heman Robinson

www.SYS-CON.com/JDJ

www.SYS-CON.com/JDJ6 August 2004

President and CEO:
 Fuat Kircaali fuat@sys-con.com

Vice President, Business Development:
 Grisha Davida grisha@sys-con.com

Group Publisher:
 Jeremy Geelan jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

 Carmen Gonzalez carmen@sys-con.com
Vice President, Sales and Marketing:

 Miles Silverman miles@sys-con.com
Advertising Sales Director:

 Robyn Forma robyn@sys-con.com
Director, Sales and Marketing:

 Megan Mussa megan@sys-con.com
Associate Sales Managers:

 Kristin Kuhnle kristin@sys-con.com
 Beth Jones beth@sys-con.com
 Dorothy Gil dorothy@sys-con.com

Editorial
Executive Editor:

 Nancy Valentine nancy@sys-con.com
Associate Editors:

 Jamie Matusow jamie@sys-con.com
 Gail Schultz gail@sys-con.com
 Jennifer Van Winckel jennifer@sys-con.com

Assistant Editor:
 Torrey Gaver torrey@sys-con.com

Online Editor:
 Lin Goetz lin@sys-con.com

Production
Production Consultant:

 Jim Morgan jim@sys-con.com
Lead Designer:

 Tami Beatty-Lima tami@sys-con.com
Art Director:

 Alex Botero alex@sys-con.com
Associate Art Directors:

 Louis F. Cuffari louis@sys-con.com
 Richard Silverberg richards@sys-con.com

Assistant Art Director:
 Andrea Boden andrea@sys-con.com

Web Services
Vice President, Information Systems:

 Robert Diamond robert@sys-con.com
Web Designers:

 Stephen Kilmurray stephen@sys-con.com
 Matthew Pollotta matthew@sys-con.com

Accounting
Financial Analyst:

 Joan LaRose joan@sys-con.com
Accounts Payable:

 Betty White betty@sys-con.com
Account Receivable:

 Shannon Rymza shannon@sys-con.com

SYS-CON Events
President, SYS-CON Events:

 Grisha Davida grisha@sys-con.com
Conference Manager:

 Lin Goetz lin@sys-con.com

Customer Relations
Circulation Service Coordinators:

 Edna Earle Russell edna@sys-con.com
 Linda Lipton linda@sys-con.com

JDJ Store Manager:
 Brunilda Staropoli bruni@sys-con.com

f you were one of the 14,000
developers walking the aisles of
the JavaOne Worldwide Develop-
ers Conference in San Francisco in

June, you likely picked up the buzz that
surrounded the issues and opportuni-
ties presented by the recent agreement
between Microsoft and Sun, and the set-
tling of their outstanding litigation while
pledging to work together to provide
better support and platform interfaces
for each other’s technologies.
 Customers likely had their say in the
matter. It all boils down to the fact that
Java is here to stay at the enterprise
– “rip up and replace” hasn’t gone over
very well since the tech sector melt-
down. Yet .NET is making steady inroads
into the very same organizations that
develop, deploy, and run Java applica-
tions – client and server apps alike.
 There are a whole host of good rea-
sons for mixing and matching platforms.
A simple example is the development
of a front-end GUI using Visual Studio/
.NET to create an app with the familiar
look and feel of Microsoft Windows/Of-
fice that links to a Java enterprise app
in the back office, and which can be
developed quickly with minimal techni-
cal effort. As Microsoft’s server-based
technologies and applications grow
exponentially, more and more Java-
based client-side applications will have
to work seamlessly with .NET in the back
office as well. Heterogeneous computing
environments are here to stay.
 This isn’t as hard to accomplish as
you might initially perceive it to be. The
goal of any application architect is to
have the flexibility to build applications
in way that optimizes performance and
cost – the platform it’s built on should
be a secondary factor because high-per-
formance third-party interoperability
solutions are available and well accepted

by the major vendors in the market to-
day. By late 2006 or early 2007, Microsoft
is scheduled to release “Indigo”, a Web
services interoperability framework that
should further break down the barriers
between Microsoft technologies and
Java.
 While SOAP/XML-based Web services
fit neatly into the “loosely connected”
SOA systems arena, they aren’t typically
high performance, which is often of
concern for enterprises today. Indigo
will rely on Web services, so how much
of the problem will really be solved?
There’s a difference between basic
interoperability and high-performance
interoperability. Therefore, develop-
ers need to choose the right balance
between cost, performance, and future-
proofing their apps.
 Some of the Microsoft–Java interop-
erability options available on the market
today will not work with Indigo due to
their reliance on a piece of the System.
Runtime.Remoting namespace called
channels and formatters. The issue is
that the entire channels/formatters
subsystem will be removed from Indigo.
Therefore any software written using
those features will not run under Indigo.
If future support for Indigo is important
for your customers, plan accordingly.
 The software industry needs choice
and continuous innovation. The foun-
dations for future advancements in
computing are based on these concepts.
For this reason the Sun–Microsoft settle-
ment is perhaps one of the best pieces of
industry news to date in 2004. Never-
theless, the resulting heterogeneous
computing environments do present
their challenges to systems architects
and developers. There is a growing list
of interoperability options available to
them that can and should be explored
and leveraged.

Viewpoint

Derek Spratt

Walking the Tightrope of
Microsoft-Java Interoperability

I

Derek Spratt is the founder

of Intrinsyc and currently

serves as its president and

CEO. Mr. Spratt was also

a cofounder and CEO of

Consequent Technologies,

a cofounder and EVP of

PCS Wireless, Inc., the VP

and business unit manager

of Nexus Engineering, and

the product development

manager in Motorola’s

Wireless Data Division.

He also takes a keen

interest in supporting the

nonprofit sector and has

provided financial and

advisory support to the BCT

Social Venture Partners,

BC ScienceWorld, and the

Sierra Legal Defense Fund.

dspratt@intrinsyc.com

www.SYS-CON.com/JDJ8 August 2004

he six blind men* who attempted
to describe the elephant eventu-
ally described it only from their
perspectives – the parts and not

the whole. The same malady can be
found lurking in one of the problems
that faces many organizations that
have adopted J2EE as their platform of
choice: the migration of these applica-
tions between J2EE application servers
– be it vendors or versions. The number
of migration initiatives that have come
up in the past few years is substantial.
There are several reasons for this:
• Java, as ever, is rapidly evolving.
• Although the splitting of Java into

three platforms (J2EE/J2ME/J2SE)
happened a few years ago, it took a
while for the app servers to catch up
and provide the necessary support.

• The number of mainstream app
server vendors has died down from
a few tens to single digit numbers
within the short span of a couple of
years.

• Since the platform on which the core
product is written has moved on,
there is no choice but to move. Often
the support for an existing version is
cut off.

• The drivers for migration are not
merely limited to app server vendors
and software. Many companies are
recognizing the need to shift to open
source and Linux platforms as a
more viable alternative. So migration
can involve one or many of several
dimensions – versions, vendors,
operating systems, hardware, related
third-party vendors, etc.

 For most organizations already
using a J2EE application server, the
upgrade to another version is not dif-
ficult, if planned properly. However,
the complete migration of several
enterprise applications is not trivial.
Therefore, it’s critical that adequate
planning be done in advance so that
the external factors (besides code
migration) have minimal impact on
the actual upgrade. The strategy and

planning for such initiatives is very
complex. The complexity is multiplied
due to the number and profiles of
stakeholders in the equation. People
tend to view migration from a narrow
perspective due to the limited visibil-
ity each individual has into the entire
process. There are several stakeholders
involved in such migration initiatives,
including:
• Developers who think of migration in

terms of the application code changes
• Administrators who think of migra-

tion in terms of production runtime
• Product architects who think of

migration in terms of the impact on
design and product features as well
as the product roadmap

• Development managers who think
of migration in terms of the resourc-
es available, existing deadlines, etc.

• Technical support and services who
think of migration in terms of the
infrastructure and capacity planning

• Executive management who think of
migration in terms the cost, the risk,
and the impact on the LOB (Lines of
Business)

 A typical migration requirement
that is prevalent in the industry today
is migration from IBM WAS 3.5 to
WAS 5.0. This is not unexpected. IBM
has finally caught up with the latest
version of the J2EE platform, but they
took their time doing it. IBM’s support
for EJB 2.0 came nearly a year after
competing vendors, such as BEA, had
provided the same. From a technol-
ogy viewpoint, a migration from 3.5 to
5.x involves code migration, applica-
tion redesign, total repackaging for
deployment, and migration of the
entire development environment from
VAJ to WSAD – just to name a few key
factors. Add the integration with MQ
at IBM clients and throw mainframes
into the mix, and the prospect of mi-
grating 20–50 enterprise applications
becomes very formidable.
 The best way for companies to
tackle this type of a tech initiative is

to include a planning phase during
which several aspects of migration are
addressed, some of which are:
• Dependencies between applications

in order to bundle and sequence the
applications to minimize disrup-
tions

• Training, especially if the develop-
ment team is shifting IDEs

• Shared code libraries, which feed
into the bundling

• Third-party APIs that may have
incompatibilities with the new ver-
sion of the app server/Java platform

• Integration with in-house utilities

 IBM provides a Redbook that serves
as a “how-to” guide for such a migra-
tion (http://publib-b.boulder.ibm.
com/Redbooks.nsf/RedbookAbstracts/
sg246910.html). However, the other
aspects of migration, such as the ones
mentioned earlier, cannot be covered
in a generic migration guidebook.
Someone has to define application
characteristics, dependencies, etc.,
and define a viable strategy for the
migration of each application, as well
the migration of all the applications in
a fixed time frame. Then a team needs
to manage the migration to ensure it’s
done in the proposed manner. The
dollars spent up front in such an effort
are a fraction of the amount of money
that will go down the drain if these
parameters are not accounted for.
 To do this in a planned fashion,
the best recourse is to engage a team
that works solely on this planning
initiative, across the applications in
the scope of the migration. Such a
team needs to operate outside all the
applications and deliver an analysis
that addresses the needs of each ap-
plication. This is your seventh (seeing)
“man” who can paint the true picture
of the elephant.

*THE AMERICAN POET JOHN GODFREY SAXE BASED HIS POEM,

“THE BLIND MEN AND THE ELEPHANT” (WWW.WORDFOCUS.COM/

WORD-ACT-BLINDMEN.HTML) ON A FABLE THAT WAS TOLD IN INDIA

MANY YEARS AGO.

Java Enterprise Viewpoint

Ajit Sagar
Contributing Editor

The Blind Men, the Elephant,
and App Server Migration

T

Ajit Sagar is a

senior technical architect

with Infosys Technologies,

Ltd., a global consulting

and IT services company.

He has been working with

Java since 1997, and has

more than 15 years’

experience in the IT industry.

During this tenure, he

has been a programmer,

lead architect, director of

engineering, and product

manager for companies from

15 to 25,000 people in size.

Ajit has served as JDJ’s J2EE

editor, was the founding

editor of XML-Journal, and

has been a frequent speaker

at SYS-CON’s Web Services

Edge series of conferences.

He has published more

than 75 articles.

ajitsagar@sys-con.com

www.SYS-CON.com/JDJ10 August 2004

 TTL is a portable C++ JNI template library that allows you

to embed a JVM within another program. An example of this

might be found inside a browser that needs to support Java

plug-ins. First I’ll discuss the traditional way to embed a JVM

within a native program, and then talk about the generic

solution offered by JTL.

o apply the solution provided by JTL, you need to know
the basics of Java, C++, and JNI. However, to understand
JTL’s design you should be familiar with modern C++
techniques, such as template programming and the

Boost library (www.boost.org).
 All the sample code in this article is written for Microsoft
Windows, but it can easily be ported to other platforms.

The Traditional Way to Embed the JVM
 Although there are lots of resources on how to embed a JVM,
most of them are based on Sheng Liang’s classic book, Java
Native Interface: Programmer’s Guide and Specification. Figure
1 shows the basic procedure.
 If the application has other threads that are using the JVM as
well, the communications among these threads will look like
Figure 2.
 Listing 1 shows the typical code (all the error checking and
exception handling code in this article has been omitted for
clarity). This code works fine as long as your program is simple
enough; however, there are three major drawbacks.

Issue 1: The JVM is a global variable, which is not acceptable
in some cases.

Issue 2: The threads in which jvm and env are used and the
thread that launches jvm couple tightly. For example, there
will be a potential timing issue that’s clearly shown in Figure 2.
The AttachCurrentThread(...) must be called after the launcher
thread initialized jvm, and DetachCurrentThread() must be
called before jvm has been destroyed; otherwise this creates
unnecessary communications overhead between threads. It gets
worse when you don’t know which thread is the launcher thread.

 Of course the VM can always be created in one thread when
the native application starts. However, this is a pure waste if
there is no Java client. The JVM should not be created if there
are no requests.

Issue 3. The function calls to AttachCurrentThread(...) and
DetachCurrent Thread() should be paired so the JVM can get
a chance to free the local references. However, it’s too easy to
not have the DetachCurrentThread() called by the programmer
(because of multiple flow paths) or by exceptions. A better ap-
proach would be to encapsulate the JVM into a class or classes.

Thin JVM Wrapper
 It’s natural to wrap the JavaVM* pointer into a member
variable, say jvm. Because only one JVM in each process can
be created (until JDK 1.4.2), the obvious class design is to make
jvm static. Listing 2 shows the first attempt.
 Here the method’s signatures are not important so let’s focus
on the class design. The thin wrapper approach is simple and
straightforward; however, it’s not much better than the C-like
code in Listing 1. It only gets rid of the explicit global variable
jvm (the static member variable is still kind of global though).
Issues 2 and 3, mentioned in the previous section, still need to
be addressed.

Singleton JVM
 The Singleton design pattern is described in Design Patterns
by Erich Gamma, et al, as “Ensure a class only has one instance,
and provide a global point of access of it.” In other words, a
Singleton class is a class for which no more than one instance
can exist at runtime. This is what the JVM behaves like. We can
apply the Singleton pattern to the JVM class design.
 Andrei Alexandrescu has provided all kinds of singleton
implementations in his book Modern C++ Design and the Loki
library. Loki has a singleton manager class template, Singleton-
Holder, that looks like Listing 3.
 The template parameter T in Listing 3 is the target class, in
our case CJavaVM. Other template parameters specify the poli-
cies that manage the singleton. As explained in Alexandrescu’s
book, “A policy defines a class interface or a class template inter-
face. The interface consists of one or all of the following: inner
type definitions, member functions, and member variables.”
Policy classes are not intended for stand-alone use and their
member functions are often static. In Loki::SingletonHolder, the

Stanley Wang is a

lead software developer

at Vcom3D, Inc., and

the author of JTL. He

received his MS in

computer science from

the University of Florida.

He is interested in

system programming,

generic programming,

database systems,

and computer graphics.

stanleyycwang@yahoo.com

by Stanley Wang

T

A solution with complete supportFeature

Embedding the
 Java Virtual Machine,

Once and for All

J2EE application problems can grind your business to a
screeching halt, devouring resources and devastating your
quality of service.

Why hunt and peck, trying to recreate the problem and
arguing about who’s to blame?

AppSight breaks through the wall between the place
problems are found and the place they’re solved, so your
team can pinpoint root causes faster than ever.

We’re talking user blunders, configuration problems,
performance issues, all the way down to code errors —

All without taking your application offline.

We have
a problem.

With AppSight,
it’s problem solved.

www.SYS-CON.com/JDJ12 August 2004

Feature

CreationPolicy determines how the singleton instance is created
and destroyed, and the ThreadingModel policy determines
whether the singleton is living in a multiple threaded world.
 Listing 4 provides the redesigned CJavaVM class and its usage
with Loki::SingletonHolder. A difference between CJavaVM and
CJavaVM2 is that all members in CJavaVM2 are not static. Listing
4 looks fancier than Listing 1. However, it does not solve the real
problems. Issues 2 and 3 are still unresolved. For example, if there
are any other threads trying to make a JNI call, it’s still a require-
ment that the JVM launcher thread has already called jvm.Start-
JavaVM(). This is because CJavaVM2’s constructor does nothing.
If StartJavaVM() can be moved into CJavaVM2’s constructor and
DestroyJavaVM() can be moved into CJavaVM2’s destructor, then
the timing issue will be solved, which is not easy to do.
 The major difficulty is that Loki::SingletonHolder’s template
parameter CreationPolicy only calls the target class T’s default
constructor. In other words, CJavaVM2’s constructor can-
not look something like this: CJavaVM2(std::string jvmpath,
JavaVMInitArgs& args). It must be CJavaVM2(). Period.
 We are not out of bullets though. The “Every problem can
be solved by adding another layer of indirection” idiom applies
here.

Policy-Based JVM Class
 The solution is to make CJavaVM2 policy-based too. Listing
5 shows the new version.
 In CJavaVM3, a new policy class JavaVMLauncher is intro-
duced and declared as follows:

class JavaVMLauncher {

public:

 static void LaunchJavaVM(void** ppLib, JavaVM** ppJavaVM);

 static void DestroyJavaVM(void* pLib, JavaVM* pJavaVM);

}

 ppLib is a pointer to a handle returned by LoadLibrary on
Windows or dlopen on Solaris. To make JavaVMLauncher more
generic, the void pointer is used here. The pointer to pointer
method is used for ppLib and ppJavaVM in LaunchJavaVM()
because JavaVMLauncher does not contain any member vari-
ables. It’s the caller to provide the placeholders for the objects
pointed to by ppLib and ppJavaVM. DestroyJavaVM() simply
accepts the cached JavaVM* and lib handle to destroy the JVM
and free the library.
 Now we can invoke the JVM as in Listing 6, which is pretty
much what JTL does. In JTL, there is another class template
called JavaVMMgr that is the placeholder for the JavaVM* and
pLib. All the JVM calls will be delegated to the JavaVMMgr.

Exception Handling
 The LaunchJavaVM() method in JavaVMLauncher can fail;
for example, if the user does not have a JRE installed on his
machine. When this happens, LaunchJavaVM() can return
a flag or error code. In JTL, it will simply throw a jtl::load_ja-
vavm_error exception.

Multithreading, Extending Loki, and boost::thread
 Remember in Listing 3, Loki::SingletonHolder has a
template parameter ThreadingModel that’s used to synchro-
nize the calls to MakeInstance(). However, under different

platforms the thread implementation and API are different. To
make the JVM class design platform portable, it needs to use a
portable threading framework. JTL uses boost::thread because
it’s simple and easy to use, and it will likely be part of the next
version of the standard C++ library.
 Though Alexandrescu provides us with the excellent
SingletonHolder class, JTL does not use it directly for two
main reasons: not all compilers support Loki well and Loki::
ThreadingModel is only implemented to work with Windows.
jtl::SingletonHolder does some extension to Loki::Singleton-
Holder to achieve the platform-portable goal. However, jtl::
SingletonHolder uses the same template parameters (and in
the same order) as Loki::SingletonHolder, therefore the user
can easily switch to Loki’s version if someday Loki provides us
with a platform-portable ThreadingModel.
 Another thing needs to be mentioned for Threading-
Model – it should be able to work with both the single-thread
model and multiple-thread model. If there’s only one thread,
there’s no sense in doing the synchronization. To achieve this
generic solution, JTL provides two class templates, Multiple-
ThreadModel and SingleThreadModel, as shown in Listing 7.
 These two classes simply provide type definitions. In
Mul-tipleThreadModel, JTL uses the boost::mutex and
boost::mutex::scoped_lock as the synchronization primi-
tives, while in SingleThreadModel it uses boostex::faked_
mutex and boostex::faked_mutex::scoped_lock as the syn-
chronization primitives. The faked mutex and scoped_lock
are simple extensions to boost mutex and scoped_lock.
They’re empty classes and provide only the required inter-
face methods, which are implemented as noop. This is a
common trick in generic programming. (ATL programmers
will recall the CComFakeCriticalSection used in CCom-
SingleThreadModel and CComMultiThreadModel that
does the same trick.)

JNIEnv Smart Pointers
 In Listing 6, we solved issues 1 and 2; we no longer have a
global variable, and we don’t have a timing issue when calling
AttachCurrentThread() and DetachCurrentThread(). However,
issue 3 – how to ensure that DetachCurrentThread() is called
– is still unresolved.
 When doing JNI programming, most of the time we’re deal-
ing with the JNIEnv* pointer rather than the JavaVM* pointer.
The most important characteristic of the JNIEnv pointer
is that it has thread affinity (it’s only valid in its associated
thread). It would be nice if we could get the JNIEnv pointer
in an arbitrary context. To achieve this and solve issue 3, JTL
provides three smart pointers: simple_env_ ptr, auto_env_ptr,
and thread_env_ptr. They’re all class templates.
 Before talking about these smart pointers, let’s review the
scenarios in which the JNIEnv pointer is used:
1. In the launcher thread: In this case the ThreadingModel

template parameter should be SingleThreadModel to avoid
unnecessary thread synchronization, even though there
may be multiple threads.

2. In multiple threads: AttachCurrentThread() and Detach-
CurrentThread() will be called only once for each thread.

3. In multiple threads: AttachCurrentThread() and Detach-
CurrentThread() can be called multiple times for each
thread (see below).

www.SYS-CON.com/JDJ14 August 2004

Feature

 simple_env_ptr, auto_env_ptr and thread_env_ptr are cor-
responding solutions for scenarios 1, 2, and 3. All these smart
pointers are derived from env_ ptr_base, which is a place-
holder for JNIEnv* pointer and has other helper functions,
such as operator->(), operator!(). By the way, all three JNIEnv
smart pointers are not full-blown. For more details about
smart pointers, please refer to Alexandrescu’s book.
 The simple_env_ptr is defined as the following:

template < ... >

class simple_env_ptr : public env_ptr_base {

public:

 //... typedefs for SingletonJVM;

public:

 simple_env_ptr() {

 SingletonJVM::Instance().GetEnv(&env_, jvm_version);

 }

 ~simple_env_ptr() { env_ = 0;}

};

 In simple_env_ptr’s constructor, the JNIEnv pointer has
been initialized by calling GetEnv(). This works because the
smart pointer is in the launcher thread.
 Similarly, auto_env_ptr is defined as the following:

template < ... >

class auto_env_ptr : public env_ptr_base {

public:

 //... typedefs for SingletonJVM;

public:

 auto_env_ptr() {

 SingletonJVM::Instance().AttachCurrentThread(&env_, 0);

 }

 ~auto_env_ptr() {

 if(env_) {

 env_ = 0;

 SingletonJVM::Instance().DetachCurrentThread();

 }

 }

}; // auto_env_ptr

 As you have seen, auto_env_ptr’s constructor and destruc-

tor do the job of attaching and detaching the current thread.
Thus we have solved issue 3 and we don’t need to worry about
the missing detaching call. However, auto_env_ ptr may not
work if there is more than one auto_env_ptr instance in the
same thread. This is clear in the following snippet:

// auto_env_ptr ptr1, ptr2

ptr1;

// ...other stuff

{

 ptr2;

}

// ... from here all calls on ptr1 may be invalid

 In this snippet, when ptr2 is out of scope, its destructor will
be called, causing the current thread to detach from the JVM.
This may cause problems because ptr1 is still active; however,
all its local references may have been freed by the JVM because
of the ptr2’s detaching call.
 To solve this problem, JTL provides thread_env_ptr, which
is defined in Listing 8. thread_env_ptr has a counter that’s
a thread local storage variable. Whenever there is a new
thread_env _ptr instance, the counter will be bumped by one.
Whenever there is a thread_env_ptr out of scope, the counter
will be decreased by one. When the counter is decreased to
zero, the current thread will be detached from the JVM.

Putting It All Together
 Listing 9 illustrates how to use the JTL JVM invocation. You
may provide your own JVMLauncher if the default one does
not meet your requirement.

Conclusion
 JTL provides complete support for the JVM invocation. It
also provides JNIEnv smart pointers to get the JNIEnv* pointer
in arbitrary context. Most of the classes in JTL are designed as
class templates and they can easily be extended. JTL provides
many template parameter implementations as well, which
can be used as the default template parameter value under
most circumstances.
 All comments about JTL and this article are highly
appreciated.

Listing 1: The traditional way to launch a JVM
typedef jint (JNICALL *pfnCreateJVM)(JavaVM** ppJvm, void**
ppEnv, void* args);
// global jvm, may be used by other threads
JavaVM* jvm;
... ... // other stuff
// Java VM launcher thread, maybe main thread, maybe not
JavaVMInitArgs vm_args;
JavaVMOption options[n];
... ... // fill in options
... ... // fill in vm_args
// get JNI_CreateVM address
HMODULE hModule = ::LoadLibrary(your_libpath);
pfnCreateJVM pfn = (pfnCreateJVM)::GetProcAddress(hModule,
“JNI_CreateJavaVM”);
JNIEnv* env;
// launch jvm
pfn(&jvm, (void**)&env, &vm_args);
// work with env
... ...
// destroy jvm
jvm->DestroyJavaVM ();
jvm = 0;
::FreeLibrary(hModule);

// Java VM consumer thread: thread-1

void thread_fun() {
JNIEnv* env = 0;
// get env
 jvm->AttachCurrentThread(&env, JNI_VERSION_1_2);
 // work with env
 jvm->DetachCurrentThread();
}

Listing 2: Thin JVM wrapper
class CJavaVM { // JavaVM* wrapper
private:
 static JavaVM* jvm;
public:
 static bool StartJavaVM(std::string jvmpath,
JavaVMInitArgs& args);
 static bool DestroyJavaVM();
 static bool GetEnv(JNIEnv** ppEnv, jint version);
 static bool AttachCurrentThread(JNIEnv** ppEnv, void*
args);
 static bool DetachCurrentThread();
 static bool AttachCurrentThreadAsDaemon(JNIEnv** ppEnv,
void* args);
 // other methods
};

www.SYS-CON.com/JDJ16 August 2004

Listing 3: Loki::SingletonHolder class template
template <
 typename T,
 template <class> class CreationPolicy =
CreateUsingNew,
 template <class> class LifetimePolicy =
DefaultLifetime,
 template <class> class ThreadingModel =
SingleThreaded
 >
class SingletonHolder {
public:
 static T& Instance();
private:
 static void MakeInstance();
 static void DestroySingleton();

 typedef typename ThreadingModel<T*>::VolatileType
PtrInstanceType;
 static PtrInstanceType pInstance_;
 static bool destroyed_;
};

Listing 4: CJavaVM2 with Loki::SingletonHolder
// CJavaVM2.hpp
class CJavaVM2 { // JavaVM* wrapper
private:
 JavaVM* jvm;
 friend Loki::CreateUsingNew<CJavaVM2>;
 CJavaVM2();
public:
 bool StartJavaVM(std::string jvmpath, JavaVMInitArgs&
args);
 bool DestroyJavaVM();
 bool GetEnv(JNIEnv** ppEnv, jint version);
 bool AttachCurrentThread(JNIEnv** ppEnv, void* args);
 bool DetachCurrentThread();
 bool AttachCurrentThreadAsDaemon(JNIEnv** ppEnv, void*
args);
 // other methods
};

// main.cpp
typedef Loki::SingletonHolder<CJavaVM2> JVM;
int main(){
 JavaVMInitArgs args;
 std::string libpath;
 JNIEnv* env;
 // fill in libpath and args
 CJavaVM2& jvm = JVM::Instance();
 jvm.StartJavaVM(libpath, args);
 jvm.GetEnv(&env, JNI_VERSION_1_2);
 // working with env
 jvm.DestroyJavaVM();
}

Listing 5: CJavaVM3
template <class JavaVMLauncher>

class CJavaVM3 {
private:
 JavaVM* jvm;

 CJavaVM3 () { JavaVMLauncher::LaunchJavaVM(... /* to do
*/); }
 ~ CJavaVM3 () { JavaVMLauncher::DestroyJavaVM(... /* to
do */); }

public:
 bool AttachCurrentThread(JNIEnv** ppEnv, void* args);
 bool GetEnv(JNIEnv** ppEnv, jint version);
 bool AttachCurrentThread(JNIEnv** ppEnv, void* args);
 bool DetachCurrentThread();
 bool AttachCurrentThreadAsDaemon(JNIEnv** ppEnv, void*
args);
 // other methods
};

Listing 6: JVM invocation with CJavaVM3
// main.cpp

typedef CJavaVM3<YourLauncher> CJavaVM;

typedef Loki::SingletonHolder<CJavaVM> JVM;

int main(){

 JNIEnv* env;

 CJavaVM2& jvm = JVM::Instance();

 jvm.GetEnv(&env, JNI_VERSION_1_2);

 // working with env

}

Listing 7: JTL Threading model
template <class Host>
class SingleThreadModel {
public:
 typedef Host volatile_type;

 typedef boostex::faked_mutex mutex;
 typedef boostex::faked_mutex::scoped_lock scoped_lock;
};

template <class Host>
class MultipleThreadModel {
public:
 typedef volatile Host volatile_type;

 typedef boost::mutex mutex;
 typedef boost::mutex::scoped_lock scoped_lock;
};

Listing 8: thread_env_ptr
template < ... >
class thread_env_ptr : public env_ptr_base {
public:
 //... typedefs for SingletonJVM;
public:
 thread_env_ptr() {
 bool bOk = SingletonJVM::Instance().
AttachCurrentThread(&env_, 0);
 if(bOk) {
 if(0 == s_counterptr.get()) {
 s_counterptr.reset(new int(1));
 }else {
 ++(*s_counterptr);
 }
 }
 }
 ~thread_env_ptr() {
 if(env_) {
 env_ = 0;
 --(*s_counterptr);
 if(0 == *s_counterptr) {
 SingletonJVM::Instance().
DetachCurrentThread();
 }
 }
 }
private:
 static boost::thread_specific_ptr<int> s_counterptr;
};

Listing 9: A complete JTL JVM invocation example
// all necessary headers
typedef jtl::win::DefaultJavaVMLauncher JVMLauncher;
boost::mutex io_mutex; // synchronize std out

class Dummy {
public:
 jtl::thread_env_ptr<JVMLauncher> env_;
 void Test() {
 boostex::ThreadID::ThreadIdType tid = boost-
ex::ThreadID::get_current_threadid();
 boost::mutex::scoped_lock lock(io_mutex);
 if(env_)
 std::cout << “get JNIEnv* in thread:”
 << tid << std::endl;
 else
 std::cout << “can not get JNIEnv* in thread:”
 << tid << std::endl;
 }
};

void launch() // thread function
{
 Dummy dummy[3];
 for(int i = 0; i < 3; ++i)
 {
 dummy[i].Test();
 }
}

int main()
{
 boost::thread thrd(&launch);

 Dummy dummy;
dummy.Test();

 thrd.join();

 return 0;
}

Feature

������������������
��������������������
������ ���� ������� ���� ������ ��� ����������� �������� ���

��

��

����� ��� ���

��

��������������������������������� ��������
������������� ������������������������

���

����� ������ ��� ��� ����� ����������� ������� �������

���

��������������������������� ������ ��� ����������

����������������������� ���������� ������������

����� ����� ������ �������� ������������� ���������

���

���������������������

���

���

��� �������������� �������� ������������ �������� ����

��������� ��������� ������������ ��������� ���� �����

���

��

��

���

���� �� ����� ������� ������ ���� ��������������� �����������

��

���

��������������

�������������������������

�������������������������

����������������������������

������������������������������������

���
���

����� ��� ���

����� ������ ��� ��� ����� ����������� ������� �������

���

��������������������������� ������ ��� ����������

����������������������� ���������� ������������

����� ����� ������ �������� ������������� ���������

���

���

���

��� �������������� �������� ������������ �������� ����

��������� ��������� ������������ ��������� ���� ����� ����������������������
��������������������������������

����������
����������

�����

��������
���������

���������
��������

��

��������
��������

��������
��������

���

��������
��� �����

�� ��� ���
���� ����

����� ��������
��� ���� ������ �������

��� �� ���
����� ���

������ ��
� �������

�

������ ������ ��� ��������
� ��������

���� ����
���� ����

������ ��
��� ��� �

�

���������
���������

���������
��������

�

��������
����� ���

� �������
��������

��

���������
��������

��������
����

www.SYS-CON.com/JDJ18 August 2004

his article describes our ex-
periences with developing a
browser-based Web conferencing
application with the following

constraints:
1. HTTP protocol (port 80) to broad-

cast and receive video/audio
2. Broadcasters and receivers are not

required to have public IP addresses
3. Multiple users, each capable of

broadcasting to and receiving feeds
from many users

4. Low-cost solution for continuous
video/audio feed

 Java Media Framework (JMF) is used
to develop the browser-based Web con-
ferencing application. In this architecture,
the client uses two JMF applets – one for
capturing video/audio from a Webcam
and the other for playing video/audio
feed. The capture applet continuously
captures video/audio feed for a specified
length of time (e.g., 10 seconds) and saves
it locally in a file. This file is uploaded
to a Web server using an upload servlet.
The media stream is stored in MSVIDEO
(AVI) or QUICKTIME (MOV) format. The
player applet then continuously fetches
the media clips from the Web server. The
player applet uses perfecting capability to
play clips from the server in a continuous
manner. The advantages of this approach
are that it does not require expensive
streaming servers, and it satisfies the
constraints mentioned earlier.
 The article will start with a brief
explanation about real-time streaming,
followed by an introduction to JMF, a
description of the capture and player
applets, and a comparison with other
technologies.

Introduction to Real-Time
and Progressive Streaming
 Real-time streaming of media allows
users to play media as they receive it.

Users don’t have to wait for the whole
media file to be downloaded before
watching. To enable real-time stream-
ing, dedicated streaming media servers
and streaming protocols, such as Real-
Time Protocol (RTP), are required. RTP
is an Internet standard for transporting
real-time data. It uses the unreliable
UDP protocol to transmit packets.
 A variant of real-time streaming is
progressive streaming, also called HTTP
streaming because it uses the commonly
used HTTP protocol and standard HTTP
servers to deliver media files. Progressive
streaming enables files to be watched as
they are downloaded. When the client
makes a request (HTTP) to the server
for the media file, the file eventually gets
stored in the client’s memory buffer. The
playback is allowed before the entire file
gets downloaded. Most firewalls allow
traffic over HTTP whereas RTP is not
permitted by most firewalls. In our ap-
proach, we’re emulating HTTP streaming.

Introduction to Java Media Framework
 The JMF API specifies a simple, uni-
fied architecture to synchronize and
control audio, video, and other time-
based data within Java applications and
applets. JMF software, documentation,
sample programs, and the source code
can be downloaded from Sun’s Web site
at http://java.sun.com/products/java-
media/jmf. In this section, we’ll briefly
discuss the basic concepts of JMF, in-
cluding a few useful classes required to
build a Web conferencing application:
1. The DataSource class is an abstrac-

tion that represents audio, video,
or a combination of both. A data
source can be a file or a stream and
is constructed from the Manager
and MediaLocator as follows:

DataSource ds = javax.media.Manager.createD

ataSource(mediaLocator);

 Here, MediaLocator is a class that
 JMF uses to represent audio or video
 media location and is created as follows:

MediaLocator mediaLocator = new

MediaLocator("vfw://0");

2. The Player class is used to play
media files or stream media. A play-
er is constructed from MediaLocator
or the media URL as follows:

Player player = Manager.createPlayer(media

Locator);

 Once the player is realized (ready to
 play state), you can call player.start()
 to play the media. A realized player
 can be created from the DataSource:

Player player = Manager.createRealizedPla

yer(ds);

3. A processor is a type of player. Besides
playing the media, it can also out-
put media through a DataSource to
another player or processor. A proces-
sor is used to manipulate the data
and convert the data from one for-
mat to another. It’s created from the
DataSource, MediaLocator, or a URL:

Processor processor = Manager.

createProcessor(new URL(“http://localhost/

test.mov));

4. A manager is one of the most impor-
tant classes of JMF. It handles the
construction of players, processors,
and DataSources, as we have seen
earlier.

Architecture Description
 The architecture of our approach
is shown in Figure 1. It implements
a Web conferencing application
over HTTP. The architecture has one

Video/Audio

by Yayati Kasralikar and
Pramod Jain

Web Conferencing Using the
Java Media Framework

T

Yayati Kasralikar is lead

programmer at Innovative

Decision Technologies, Inc.

(INDENT). He holds an

MS from the University of

Central Florida, Orlando.

yayati@indent.org

Broadcast and receive media streams

Pramod Jain is president,

Innovative Decision

Technologies, Inc. (INDENT).

INDENT has built several

large-scale Java-based

collaboration portals.

Pramod has a PhD from

the University of

California, Berkeley.

 pramod@indent.org

http://www.reportingengines.com/download/21ways.jsp

A free offer for readers of Java Developer’s Journal!

Formula One e.Spreadsheet Engine:
Finally, there’s a supported, Pure Java
tool that merges the power of Excel
spreadsheets and Java applications.

1 Automatically generate dynamic
Excel reports. No more manual
querying and cutting-and-pasting
to create Excel reports!

2 Manage calculations and business
rules on J2EE servers with Excel
fi les. No more translating Excel
formulas to Java code!

3 Embed live, Excel-compatible data
grids in applets and Java desktop
applications. No more static HTML
or presentation-only data grids!

Download your trial and test our demos
and sample code. See for yourself how
the Formula One e.Spreadsheet Engine
can help your Java application leverage
the skills of Excel users in your business.

Download
this quick-read
white paper
and trial today!

888-884-8665 • www.reportingengines.com
sales@reportingengines.com

FREE TRIALS,

DEMOS, &

SAMPLE

CODE!

http://www.reportingengines.com/download/f1ere.jsp

Build reports against JDBC, XML, Java objects, BEA Portal Server logs, BEA
Liquid Data, and other sources visually or with Java code. It’s embedded!
No external report server to set up. Unlimited users and CPUs per license.

Copyright © 2004 ReportingEngines (a division of Actuate Corporation). All rights reserved. Formula One is a registered trademark of Actuate Corporation.
Java and Java-based trademarks and logos are the trademarks or registered trademarks of Sun Microsystems Inc., in the United States and other countries. All other trademarks are property of their respective owners. All specifi cations subject to change without notice.

www.SYS-CON.com/JDJ20 August 2004

centralized server and one or many
distributed clients. The server has a
Web server and a servlet container.
Clients run two applets, one for cap-
turing media and the other for playing
the media.
 The high level steps are:
1. The applet continuously captures

video and audio streams from
the Webcam. These streams are
saved locally in a specified format
as a file every few seconds. This
file is uploaded to the server over
HTTP using a file upload servlet.
Uploading uses a separate thread.
A significant loss of frames will
result if the file upload is in the
same thread as file capture. Note
that a more efficient method
would be to write these streams
directly on the server using a
socket. This is currently not pos-
sible because the DataSource
class provided with JMF does
not contain a method to get
the InputStream. A custom
InputStream-based DataSource
can be developed (e.g., http://
www.extollit.com/isdsjmf.php).

2. A server gets a new file clip from
the sender and stores it in a sender-
specific directory. A counter, such
as filename+i, is attached to the file-
name.

3. The JMF Player applet continuously
downloads new files from the Web
server. It uses JMF’s perfecting capa-
bility to play these clips in a con-
tinuous manner. When the current
clip is being played, a new instance
of Player is created for the next clip
and the next clip is downloaded
from the server. This makes the play-
ing of clips continuous, as the next
clip to be played has already been
prefetched. Note that the entire clip
is downloaded by the player applet
before playing it.

 At the start of playing and during
the process of fetching a new clip, the
player applet checks new file availabil-
ity for n seconds before timing out.

Computation of Parameters
 First, we’ll do an approximate
mathematical analysis for bandwidth
consideration and demonstrate the
usability of our approach with a few
special cases.

 Suppose:

One second file clip size = oneSecFileSize bits

Time duration of each clip = cSec seconds

Upload Transmission rate = uRate bits per

second

Download Transmission rate = dRate bits per

second

Time to upload, tUpload = oneSecFileSize

*cSec/uRate

Time to download, tDownload = oneSecFileSize

*cSec/dRate

 If the time to upload or download a clip
is more than the time to play a clip, the
player will wait and the receiver will see a
break, i.e., max(tUpload,tDownload)>c
Sec. For the continuous playing of clips,
the following condition must be true:

Max (1/uRate, 1/dRate) > 1/ oneSecFileSize

Min (uRate, dRate) > oneSecFileSize

 According to the equation, the wait
time between clips at the receiver does
not depend on clip size. The only vari-
able that matters for a continuous play-
back is the size of a one-second file and
that the provided upload and download
rates meet the above condition. Lag
time between playing and capturing is:

cSec + tupload + tdownload

 From the above equation, the maxi-
mum lag with no break in the feed is
3*cSec, and the minimum lag is cSec.
 To get a Web conference that is as
close to real time as possible, cSec
should be reduced. Next, we will apply
the above analysis to the following cases.

• Both sender and receiver have a low
bandwidth modem connection

 Let’s assume the uRate = dRate = 20K
bits/sec. In this case, the one-second file

size should be less than 20Kbits. If the
clip size is 10 seconds, the maximum
playback lag will be 30 seconds. We have
observed that the minimum file size for
transmitting a one-second video (with
no audio) is 8Kbits using H263 encoding
and 128x96 pixels video size. H263 en-
coding is ideal for a low-bandwidth en-
vironment because it produces smaller
file sizes. The H263 encoder in the JMF
2.0 is capable of handling only limited
video sizes (only 352x288, 176x144, and
128x96). We observed a minimum file
size with the video and an 8-bit mono
audio with an 8000Hz sampling rate to
be 80Kbits.

• Either the sender or receiver has a
low bandwidth connection

 Let’s assume that the lower rate is rate
= 20Kbits/sec and the other rate is much
higher. In this case the one-second file
size should be less than 20Kbits, but
the maximum playback lag is about 20
seconds if the clip size is 10 seconds.

• Both sender and receiver have high
bandwidth

 In this case better quality video can be
transmitted. The playback lag will be the
same as the clip size in seconds. JPEG
encoding offers good quality video and is
well suited to a high-bandwidth environ-
ment. File sizes can be decreased during
JPEG encoding by lowering JPEG quality.

 There are no easy guidelines to
predict the exact size of the one-second
clip; it depends on the video size, the
audio sampling rate, video and audio
encoding, the frame rate, and the file
format. Users should experiment with
using different values for these param-
eters and a variety of movement in the
video to determine an approximate one-
second file size.

 Figure 1 Architecture

Sender Server

JMF Player
Applet

Receiver
Upload Thread

WebCam

JMF Capture Applet

vfw/directSound

HT
TP

File Upload Servlet

Directory of File Clips

HTTP

Video/Audio

www.SYS-CON.com/JDJ22 August 2004

JMF Capture Applet
 The high-level steps for developing
capture applet are (see Listing 1):
1. A DataSource is created from

the Webcam source using the
MediaLocator.

2. A ProcessorModel is created from
the DataSource, the format object
specifying the video format, and the
FileDescriptor object specifying the
output file format.

3. A Processor is created from the
ProcessorModel and the output
DataSource is obtained from the
Processor.

4. A DataSink object is created by first
creating a MediaLocator for storing
the media in a file.

5. Capture of the stream is started and
the stream is saved for a specified
duration into a file.

 This process is repeated until the
sender ends the session.

File Upload
 The File Upload uses the JUpload
project (http://jupload.sourceforge.
net/). It has two parts: the file upload
thread at the client and the upload
servlet at the server. The following
are the steps for developing the File
Upload thread (see Listing 2):
1. Create a socket connection with the

server.
2. Create an HTTP POST request and

an HTTP head and tail.
3. Create necessary IO stream objects.
4. Send an HTTP request to the server.

Write the HTTP head, the clip file,
and the HTTP tail to the server.

 The Upload Servlet uses O’Reilly’s
multipart request executor (www.
servlets.com/cos/index.html) to
upload the files. MultipartRequest
is a utility class that handles mul-
tipart/form-data requests for file
uploads.

JMF Player Applet
 The high-level steps for developing
a player applet are (see Listing 3):
1. Construct two players from the URL

of the media at the Web server. One
player is for the current clip and the
other is for the next clip.

2. Start the first player and fetch the
next clip using the second player.

3. On the EndOfMediaEvent for clip
i, start playing clip i+1. Destroy the
visual component for the player
of clip i, de-allocate the player,
and create a new player for clip
i+2. Prefetch the clip i+2 and add
ControllerListener. Repeat these
steps for subsequent clips.

 This makes the playing of clips
continuous, as there will be little or
minimal delay between subsequent
clips. Note that the entire clip is down-
loaded by the player applet before
playing it.

HTML Code for Sender and Receiver Applets
 The HTML code for the sender ap-
plet is shown in Listing 4.
 The HTML code for the receiver ap-
plet is shown in Listing 5. Note that this
HTML page is generated dynamically
with the appropriate senderID and
current counter. If the receiver wants to
receive multiple feeds, multiple applet
entries are generated in HTML.

Drawbacks
1. There is a lag between capturing and

playing.
2. It involves expensive disk write

operations.
3. Both receivers and senders must

have JMF software installed.

Future Enhancements
1. A sophisticated in-memory buffer-

ing mechanism to allow better video
quality and efficient delivery by
eliminating expensive disk writes

2. Extending the DataSource class to
allow InputStream-based process-
ing to save the media directly at the
server and remove the need
for a local buffer.

3. To package and deliver required
dlls and registry files of JMF so
that there’s no need to install JMF
software.

Comparison to JMF-Based P2P
Web Conferencing Using RTP
 Thus far, we have described an
HTTP-based approach that involves
no real-time streaming. An alterna-
tive to the above approach is a peer-
to-peer, RTP-based Web conferencing
solution that can be developed
using the JMF API. The source code
for the RTP Server/Sender can be
found at http://java.sun.com/
products/java-media/jmf/2.1.1/
solutions/AVTransmit.html and at
http://java.sun.com/products/java-
media/jmf/2.1.1/samples/sample-
code.html#RTPPlayerApplet for
the RTP Player applet. The RTP Ser-
ver cap-tures the media from the
Webcam and streams it to receivers
by specifying IP addresses and
port numbers. The RTP Player
listens on a specific port for
streams coming form the sender’s
IP address.
 The primary difference between
the HTTP approach and the RTP ap-
proach is that RTP streams the feeds
continuously to receivers without
storing them in files locally or at the
server. The disadvantages of the
above RTP approach are:
1. Public IP addresses are required

for both the sender and the
receiver.

2. The senders and receivers should
not be behind firewalls because
RTP is not allowed by most corpo-
rate firewalls.

3. Also, as the number of partici-
pants increases, the number of
ports also increases linearly. This
makes user and port management
challenging.

4. The default RTP implementation
of JMF uses the unreliable UDP
protocol, so delivery time and
quality are not guaranteed – it may
result in the dropping of frames or
make frames out of sequence dur-
ing transmission.

Video/Audio

 Figure 2 Web conferencing using streaming servers

Sender Receiver

1

3

2

4

User Management
(at start of

each user session)

Streaming Server

--

www.SYS-CON.com/JDJ24 August 2004

Comparison to Web Conferencing Using
Streaming Servers
 The architecture of the Web conferenc-
ing system using commercially streaming
servers is shown in Figure 2. Senders first
register a unique broadcast/mount point
with a user management component as
shown by arrow 1. The sender then uses
streaming protocol (for example, RTP
or RTSP) to push the media stream to a
centralized streaming server, as shown by
arrow 3. Receivers first look for senders
at the user management component (as
shown by arrow 2) and obtain corre-
sponding broadcast addresses. Receivers
then request and receive media from the
streaming server, as shown by arrow 4.
 In this approach we don’t need to
break the feed into smaller clips. Send-

ers use the encoder to stream the media
to the server. The server then streams
the media to receivers. The disadvan-
tages of this approach are:
1. The architecture is heavy as it

involves the use of costly and com-
plex streaming servers, players, and
encoders

2. It’s not an open architecture. The
architecture becomes specific to one
particular system such as RealSystem,
which makes it nonportable with
solutions from other vendors.

3. Capture programs, a.k.a. encoders,
are not readily available and are not
browser based.

4. It uses special streaming protocols
such as RTP or RTSP, which are not
allowed through a firewall.

Conclusion
 The approach presented here offers a
near real-time, low-cost Web conferencing
solution. It allows multiple users to broad-
cast and receive media streams, it uses the
HTTP protocol, and does not require the
broadcaster and receiver to have public IP
addresses. The source code for this article
is available at www.indent.org/jdj-jmf/.

References
• Java Media Framework (JMF): http://

java.sun.com/products/java-media/
jmf/

• JMF RTP Support: http://java.sun.
com/products/java-media/jmf/ 2.1.1/
support-rtp.html

• Mack, S. (2002). Streaming Media
Bible. Hungry Minds.

Video/Audio

Listing 1: JMF Capture Applet
Step-1
videoDataSource = javax.media.Manager.createDataSource(vide
oMediaLocator);
Step-2
videoOutputFormat[0] = new VideoFormat(VideoFormat.H263, new
Dimension(160,120), Format.NOT_SPECIFIED, null, 15);
outputType = new FileTypeDescriptor(FileTypeDescriptor.
QUICKTIME);
ProcessorModel processorModel = new ProcessorModel(videoDat
aSource, videoOutputFormat, outputType);
Step-3
videoProcessor = Manager.createRealizedProcessor(processor
Model);
if (videoProcessor != null) videoDataSource = videoProces-
sor.getDataOutput();
Step-4
MediaLocator dest = new MediaLocator("file://" + file);
DataSink filewriter = Manager.createDataSink(videoDataSourc
e, dest);
filewriter.open();
Step-5
filewriter.start();
videoProcessor.start();

Listing 2: File Upload Thread
Step-1
URL url = new URL(“http://localhost:80/jmf/parserUpload.
jsp”);
Socket sock = new Socket(url.getHost(), (-1 == url.get-
Port()) ? 80 : url.getPort());
Step-2
header.append("POST ");
header.append(url.getPath());
header.append(" HTTP/1.0\r\n");
header.append("Content-type: multipart/form-data; bound-
ary=");
header.append(boundary.substring(2, boundary.length()) +
"\r\n");
header.append("Content-length: ");
header.append(contentLength);
header.append("\r\n");
header.append("\r\n");
Step-3
dataout = new DataOutputStream(new BufferedOutputStream(soc
k.getOutputStream()));
datain = new BufferedReader(new InputStreamReader(sock.get-
InputStream()));
Step-4
dataout.writeBytes(header.toString());
uploadFileStream(files, dataout);
dataout.writeBytes(tail.toString());

Listing 3: JMF Player Applet
Step-1
URL mediaURL1 = new URL(videoDir + mediaFile + counter +
".mov");
counter++;
URL mediaURL2 = new URL(videoDir + mediaFile + counter +
".mov");
Player player1 = Manager.createPlayer(mediaURL1);
Player player2 = Manager.createPlayer(mediaURL2);
Step-2
player1.start();
player2.fetch();
Step-3
player2.start();
add(player2.getVisualComponent());
if(visualComp!=null) remove(visualComp);
visualComp = player2.getVisualComponent();
counter++;
URL mediaURL = new URL(videoDir + mediaFile + counter +
".mov");
player = Manager.createRealizedPlayer(mediaURL);
player.addControllerListener(this);
player.prefetch();

Listing 4: Sender HTML code
<html> <head>
<body>
 <applet code=SaveVideoApplet.class width=320
height=280>
 <param name=archive value="jmf.jar">
 <param name=counter value="0">
 <param name=uploadurl value="http:/localhost/jmf/
upload.jsp">
 <!-- URL of the Upload Servlet -->
 <param name=sender value="test">
 <!-- sender id -->
 </applet>
</body></html>

Listing 5: Receiver HTML code
<html> <body>
 <applet code=PlayerApplet.class width=320 height=280>
 <param name=archive value=”jmf.jar”>
 <param name=counter value=”0”> <!-- counter at the
time of request -->
 <param name=sender value=”test”> <!-- sender id -->
 <param name=rate value=”1.0”> <!-- rate at which
player sees the video -->
 <param name=videodir value=”http://localhost/jmf/vid-
eos/”> <!-- server directory; all clips from sender will be
at http://localhost/jmf/videos/ -->
 </applet>
</body></html>

www.SYS-CON.com/JDJ26 August 2004

recently enjoyed reading A Short
History of Nearly Everything by
Bill Bryson. In his book, Bill goes
back to basics and delves into

the history of many things we take as
facts. One memorable observation is
a reminder that we are all just collec-
tions of trillions of atoms assembled
in a unique configuration, a one off,
never to be repeated again.
 Given this cosmological
randomness I’m at a loss to
explain how we ended up
with two very fine articles
about JNI this month. The
random skew doesn’t end
there. I recently presented
a session at the JavaOne
conference about the J2SE 5.0
release, code named “Tiger.”
At the same time, Apple was
headlining the OS X.4 release
at the WorldWide Developer
Conference, barely a block
away, and their release was also code
named “Tiger.”
 However, this is where the parallel
universe stops. While Apple users
were bemoaning the lack of access to
key information like bug reports, the
Java community was treated to a cute
tiger cub, new open source projects,
Java3D and Project Looking Glass,
and the arrival of the next update to
the Java platform, now renamed J2SE
5.0.
 I have attended all nine JavaOne
conferences and this year’s confer-

ence reminded me of some of the
best. Packed with technical content
and with nearly 15,000 attendees,
it represented a renewal in the com-
munity. A renewal that will result
in new tools, new books, and new
products based on the J2SE 5.0 foun-
dation. By the time you read this,
the J2SE 5.0 JSRs will be heading
into the final stages of the Java Com-

munity Process, the Final Approval
Ballot. Although that marks the end
of the JCP and engineering cycle, it
also represents the first day of J2SE
5.0 in real deployments and ultimate-
ly the success of the platform.
 You may be thinking, what’s in
it for me, the regular JDJ reader?
Well, I will make two promises.
First, expect the same high-quali-
ty technical articles that you have
been used to. I’ve been reading
and writing for JDJ for many years
and wouldn’t settle for anything

less. My second promise is that
there will be a special focus on
J2SE 5.0 throughout the year. Don’t
worry, there will still be room for
content for older releases too.
 There has been a fair amount of
attention centered on the language
features, like Generics, Metadata,
and the enhanced for loop, to name
a few. The language changes are

certainly a core part of the re-
lease; however, there are many
other features that are just as
useful yet not as well known.
Features like performance and
monitoring can be used with
existing applications without
changing a single line of code.
Some features, like the new
profiling API, will require a
fair amount of porting. To help
make that transition easier, I
will be searching for case stud-
ies. My aim is to give you the

tools and techniques to ramp up to
using J2SE 5.0. This is also your op-
portunity to help out fellow develop-
ers. If you are interested in writing
some J2SE 5.0 material, please send
your proposal to http://grids.sys-
con.com/proposal.
 Finally, I would like to thank Joe
Ottinger for steering the JDJ ship for
the past year. Joe suggested I use my
J2SE 5.0 experience to guide the core
section this year and I hope to make
good on that suggestion. Let us make
this a year to remember.

Core and Internals Viewpoint

Calvin Austin
Core and Internals Editor

A Tail of Two Tigers
I

A co-editor of JDJ since

June 2004, Calvin Austin

is the J2SE 5.0 Specification

Lead at Sun Microsystems.

He has been with Java

Software since 1996 and

is the Specification Lead

for JSR-176, which defines

the J2SE 5.0 (“Tiger”)

release contents.

calvin.austin@sys-con.com

By the time you read this, the J2SE 5.0 JSRs will be heading into the
final stages of the Java Community Process, the Final Approval Ballot”“

Finally there’s a high-performance database that loves Java just as
much as you do: Berkeley DB Java Edition (JE). Brought to you by the
makers of the ubiquitous Berkeley DB, Berkeley DB JE has been written
entirely in Java from the ground up and is tailor-made for today’s
demanding enterprise and service provider applications.

Berkeley DB JE has a unique architecture that’s built for speed. The software executes in the JVM of your application,
with no runtime data translation or mapping required. Plus Berkeley DB JE has been specifically designed to
handle highly concurrent transactions, comfortably managing gigabytes of data. And because it’s built in your
language of choice, your organization enjoys shorter development cycles and accelerated time-to-market.

Experience the outstanding performance of Berkeley DB JE for yourself.
Download Berkeley DB JE today at www.sleepycat.com/bdbje. Register now, and you’ll also receive a 15%
discount on a commercial license purchased before November 30, 2004.

Berkeley DB Java Edition
Download at www.sleepycat.com/bdbje

Introducing a high-performance database that’s 100% Java.

©
2

0
0

4
 S

L
E

E
P

Y
C

A
T

 S
O

F
T

W
A

R
E

 I
N

C
.

A
L

L
 R

IG
H

T
S

 R
E

S
E

R
V

E
D

.

Javavavoom!

www.SYS-CON.com/JDJ28 August 2004

pache Cactus is part of the Jakarta project and is an

open source framework for unit testing server-side

Java code. It uses and extends the JUnit framework

and facilitates unit testing of servlets, JSPs, Taglibs, EJBs, and filters.

 Testing server-side components is more complicated than
testing client-side code because these components interact
with a container and require access to many container-man-
aged objects such as request and session. It’s possible to make
a mock-up of all the container-managed objects and test the
components. These mock objects provide a “clean” environ-
ment for testing that is totally isolated from the container. The
other approach is to use an in-container strategy. Using this,
the test code runs on a real (not mock) container and uses real
container-managed objects. Both approaches have their advan-
tages and disadvantages. Cactus is based on the in-container
testing and our discussion will focus on this approach.
 I’ll explore how to use the Cactus framework to write JUnit-
based test classes for testing server-side components.

Understanding Cactus – How It Works
 Cactus tests are organized into Cactus TestCase classes.
You can subclass and implement any of the three provided
Cactus TestCase classes: ServletTestCase, JspTestCase, and
FilterTestCase. Figure 1 explains the overall system.
 Here, XXX is the name of the test. Unlike a JUnit test, the
Cactus test runs in two different environments: client-side
and server-side. The class-under-test is a server component
like a servlet or a JSP. The following are the different steps that
occur when a Cactus test (testXXX) is run:
1. The JUnit TestRunner executes the TestCase method runTest. If

defined, the method beginXXX is executed. This method may
be implemented to initialize a Web request (HTTP parameters
and headers) to the server-side component-under-test.

2. Cactus opens an HTTP connection to a Cactus redirector
proxy. All the parameters set up in step 1 are sent in the
HTTP request.

3. The redirector acts like a proxy on the server-side for your tests.
It creates a new instance of the TestCase class and executes the
test. The TestCase class is instantiated twice: once on the cli-
ent-side (by the TestRunner) and once on the server-side (by

 the redirector proxy). The client-side instance is used to run
 the method beginXXX and endXXX and the server-side

 instance is used to run the test methods. The redirector also
 initializes the TestCase instance with server-side implicit ob-
 jects (HttpServletRequest, HttpServletResponse, ServletCon-
 text,…) which are made available to the test methods.

4. The setUp method is executed. If required, implement this
 method to define a test fixture.

5. The redirector executes the test method (testXXX).
6. The test method usually instantiates the component-under-

 test and invokes the methods that need to be tested. It uses
 JUnit assert API (assertEquals, assert,…) to verify the result.

7. The tearDown method is executed. If required, implement
 this method to do clean up.

8. If the test fails, the redirector proxy handles the exception
 thrown from testXXX.

9. If an exception has been raised, the proxy returns the
 exception information back to the client side.

10. If no exception has occurred, the method endXXX(org.
 apache.cactus.WebResponse) or endXXX(com.meterware.
 httpunit.WebResponse)* is executed if it is defined. This
 method may be implemented to verify the response
 from the server-side component.

* This signature is used for HttpUnit integration

Cactus Redirectors
 Cactus provides three redirectors: ServletRedirector,
JspRedirector, and FilterRedirector. Cactus TestCase uses a
corresponding redirector implementation (for example, Serv-
letTestCase uses ServletRedirector). The implicit objects that
are created and initialized in a Cactus test instance depend
on the specific redirector. A servlet redirector initializes a
servlet test case with servlet API objects. On the other hand, a
JSP redirector initializes a JSP test case instance with JSP API
objects.

Writing a Cactus Test
 To write a Cactus test, complete the following steps:
1. Implement a subclass of a Cactus TestCase implementa-

tion. Subclass the ServletTestCase class if your component-
under-test is a servlet or subclass the JspTestCase class if
your component-under-test uses JSP API objects. If your
component-under-test is a servlet filter, extend your test from
FilterTestCase.

Kishore Kumar works

as a Java architect at

US Technology (www.ustri.

com). He specializes

in J2EE applications.

kishore_kumar@usswi.com

by Kishore Kumar

A

Testing server-side components

Feature
public class TestSampleServlet extends ServletTestCase

{

}

2. Implement standard JUnit methods. As in a normal JUnit test,
define the following JUnit methods in your test case class:
• A constructor with a single string parameter, which is the
 test name that needs to be executed when the test is run.
• A method suite to collect the test into a JUnit TestSuite
 object. Running the TestSuite will run all contained
 tests. A convenient TestSuite constructor can create
 a suite object that contains test case instances for every
 method starting with “test” in a given class.

public TestSampleServlet(String testName)

{

super(testName);

}

public static Test suite()

{

return new TestSuite(TestSampleServlet.class);

}

• Override the method setUp to initialize a test fixture
 and the method tearDown to clean up the fixture.
 These are executed at the server side and all the server-
 side implicit objects are available to these methods.

3. Implement the testXXX method. In the test method,
you will:
• Instantiate the component-under-test. Since the test
 case extends Cactus TestCase, server-side implicit
 objects are defined and initialized with valid values.
 These are available to the test methods through
 TestCase instance members.
• Call the method to be tested.
• Perform JUnit standard asserts (assertTrue, assert, …)
 to verify the result.

public void testXXX()

{

 SampleServlet servlet=new SampleServlet();

 // session is an implicit object defined in cactus TestCase class

 session.setAttribute(“name”,”value”);

 String result=servlet.doSomething(request);

 assertEquals(“some value”,result);

}

4. Implement the method beginXXX to initialize the HTTP
request to the server.

5. Implement the method endXXX to verify the HTTP
response from the server.

Testing Servlets
 You need to subclass and implement a ServletTestCase
to test a servlet. The ServletTestCase provides the follow-
ing implicit objects: request (HttpServletRequest), response
(HttpServletResponse), session (HttpSession), and config
(ServletConfig). The ServletTestCase uses the ServletRedirec-
tor as the proxy to servlet tests.

public void beginXXX(WebRequest request)

{

 request.addParameter(“param1”,”value”);

}

public void testXXX()

{

 ServletToTest s=new ServletToTest();

 s.init(config);

 s.methodToTest();

 assertEquals(“some value”, session.getAttribute(“result”));

}

public void endXXX(WebResponse response)

{

 Cookie cookie=response.getCookie(“someCookie”);

 assertEquals(“some value”,cookie.getvalue());

}

Testing JSPs
 Testing JSPs covers the following: verifying the result of JSP
processing (HTML) and unit testing JSP tag libraries. Unit test-
ing tag libraries are discussed later.
 You can still have your test case class extend from Serv-
letTestCase if your test does not use any of the JSP API objects
(like PageContext).
 The Web response can be easily verified by implementing
the method endXXX in a ServletTestCase subclass.

public class SimpleTest extends ServletTestCase

{

 […]

 public void testXXX()

{

 RequestDispatcher rd=config.getServletContext().

 getRequestDispatcher(“test.jsp”).

 rd.forward(request,response);

}

}

public void endXXX(org.apache.cactus.WebResponse webResponse)

{

 // Assert Result

 […]

}

 Cactus also integrates HttpUnit into the framework. The
HttpUnit implementation of the WebResponse object (com.
meterware.httpunit.WebResponse theResponse) can be used
to verify the HTML response.

public void endXXX(com.meterware.httpunit.WebResponse theResponse)

{

WebTable table = theResponse.getTables()[0];

assertEquals("rows", 4, table.getRowCount());

assertEquals("columns", 3, table.getColumnCount());

assertEquals("links", 1, table.getTableCell(0, 2).getLinks().

length);

}

Testing JSP Tag Libraries
 For testing JSP Tag libraries,
extend your test case class
from JspTestCase. In addition
to the servlet implicit objects,
JspTestCase provides the
following implicit objects: out
(JspWriter) and pageContext
(PageContext). These implicit Figure 1 Cactus System

1. beginXXX()

10. endXXX()

2

9

Cactus Test Case
Redirector

Proxy Cactus Test Case

Class Under
Test

3

8 6

4. setUp()
5. testXXX()
7. tearDown()

Client-side server-side

29August 2004www.SYS-CON.com/JDJ

pache Cactus is part of the Jakarta project and is an

open source framework for unit testing server-side

Java code. It uses and extends the JUnit framework

and facilitates unit testing of servlets, JSPs, Taglibs, EJBs, and filters.

 Testing server-side components is more complicated than
testing client-side code because these components interact
with a container and require access to many container-man-
aged objects such as request and session. It’s possible to make
a mock-up of all the container-managed objects and test the
components. These mock objects provide a “clean” environ-
ment for testing that is totally isolated from the container. The
other approach is to use an in-container strategy. Using this,
the test code runs on a real (not mock) container and uses real
container-managed objects. Both approaches have their advan-
tages and disadvantages. Cactus is based on the in-container
testing and our discussion will focus on this approach.
 I’ll explore how to use the Cactus framework to write JUnit-
based test classes for testing server-side components.

Understanding Cactus – How It Works
 Cactus tests are organized into Cactus TestCase classes.
You can subclass and implement any of the three provided
Cactus TestCase classes: ServletTestCase, JspTestCase, and
FilterTestCase. Figure 1 explains the overall system.
 Here, XXX is the name of the test. Unlike a JUnit test, the
Cactus test runs in two different environments: client-side
and server-side. The class-under-test is a server component
like a servlet or a JSP. The following are the different steps that
occur when a Cactus test (testXXX) is run:
1. The JUnit TestRunner executes the TestCase method runTest. If

defined, the method beginXXX is executed. This method may
be implemented to initialize a Web request (HTTP parameters
and headers) to the server-side component-under-test.

2. Cactus opens an HTTP connection to a Cactus redirector
proxy. All the parameters set up in step 1 are sent in the
HTTP request.

3. The redirector acts like a proxy on the server-side for your tests.
It creates a new instance of the TestCase class and executes the
test. The TestCase class is instantiated twice: once on the cli-
ent-side (by the TestRunner) and once on the server-side (by

 the redirector proxy). The client-side instance is used to run
 the method beginXXX and endXXX and the server-side

 instance is used to run the test methods. The redirector also
 initializes the TestCase instance with server-side implicit ob-
 jects (HttpServletRequest, HttpServletResponse, ServletCon-
 text,…) which are made available to the test methods.

4. The setUp method is executed. If required, implement this
 method to define a test fixture.

5. The redirector executes the test method (testXXX).
6. The test method usually instantiates the component-under-

 test and invokes the methods that need to be tested. It uses
 JUnit assert API (assertEquals, assert,…) to verify the result.

7. The tearDown method is executed. If required, implement
 this method to do clean up.

8. If the test fails, the redirector proxy handles the exception
 thrown from testXXX.

9. If an exception has been raised, the proxy returns the
 exception information back to the client side.

10. If no exception has occurred, the method endXXX(org.
 apache.cactus.WebResponse) or endXXX(com.meterware.
 httpunit.WebResponse)* is executed if it is defined. This
 method may be implemented to verify the response
 from the server-side component.

* This signature is used for HttpUnit integration

Cactus Redirectors
 Cactus provides three redirectors: ServletRedirector,
JspRedirector, and FilterRedirector. Cactus TestCase uses a
corresponding redirector implementation (for example, Serv-
letTestCase uses ServletRedirector). The implicit objects that
are created and initialized in a Cactus test instance depend
on the specific redirector. A servlet redirector initializes a
servlet test case with servlet API objects. On the other hand, a
JSP redirector initializes a JSP test case instance with JSP API
objects.

Writing a Cactus Test
 To write a Cactus test, complete the following steps:
1. Implement a subclass of a Cactus TestCase implementa-

tion. Subclass the ServletTestCase class if your component-
under-test is a servlet or subclass the JspTestCase class if
your component-under-test uses JSP API objects. If your
component-under-test is a servlet filter, extend your test from
FilterTestCase.

Kishore Kumar works

as a Java architect at

US Technology (www.ustri.

com). He specializes

in J2EE applications.

kishore_kumar@usswi.com

by Kishore Kumar

A

Testing server-side components

Feature
public class TestSampleServlet extends ServletTestCase

{

}

2. Implement standard JUnit methods. As in a normal JUnit test,
define the following JUnit methods in your test case class:
• A constructor with a single string parameter, which is the
 test name that needs to be executed when the test is run.
• A method suite to collect the test into a JUnit TestSuite
 object. Running the TestSuite will run all contained
 tests. A convenient TestSuite constructor can create
 a suite object that contains test case instances for every
 method starting with “test” in a given class.

public TestSampleServlet(String testName)

{

super(testName);

}

public static Test suite()

{

return new TestSuite(TestSampleServlet.class);

}

• Override the method setUp to initialize a test fixture
 and the method tearDown to clean up the fixture.
 These are executed at the server side and all the server-
 side implicit objects are available to these methods.

3. Implement the testXXX method. In the test method,
you will:
• Instantiate the component-under-test. Since the test
 case extends Cactus TestCase, server-side implicit
 objects are defined and initialized with valid values.
 These are available to the test methods through
 TestCase instance members.
• Call the method to be tested.
• Perform JUnit standard asserts (assertTrue, assert, …)
 to verify the result.

public void testXXX()

{

 SampleServlet servlet=new SampleServlet();

 // session is an implicit object defined in cactus TestCase class

 session.setAttribute(“name”,”value”);

 String result=servlet.doSomething(request);

 assertEquals(“some value”,result);

}

4. Implement the method beginXXX to initialize the HTTP
request to the server.

5. Implement the method endXXX to verify the HTTP
response from the server.

Testing Servlets
 You need to subclass and implement a ServletTestCase
to test a servlet. The ServletTestCase provides the follow-
ing implicit objects: request (HttpServletRequest), response
(HttpServletResponse), session (HttpSession), and config
(ServletConfig). The ServletTestCase uses the ServletRedirec-
tor as the proxy to servlet tests.

public void beginXXX(WebRequest request)

{

 request.addParameter(“param1”,”value”);

}

public void testXXX()

{

 ServletToTest s=new ServletToTest();

 s.init(config);

 s.methodToTest();

 assertEquals(“some value”, session.getAttribute(“result”));

}

public void endXXX(WebResponse response)

{

 Cookie cookie=response.getCookie(“someCookie”);

 assertEquals(“some value”,cookie.getvalue());

}

Testing JSPs
 Testing JSPs covers the following: verifying the result of JSP
processing (HTML) and unit testing JSP tag libraries. Unit test-
ing tag libraries are discussed later.
 You can still have your test case class extend from Serv-
letTestCase if your test does not use any of the JSP API objects
(like PageContext).
 The Web response can be easily verified by implementing
the method endXXX in a ServletTestCase subclass.

public class SimpleTest extends ServletTestCase

{

 […]

 public void testXXX()

{

 RequestDispatcher rd=config.getServletContext().

 getRequestDispatcher(“test.jsp”).

 rd.forward(request,response);

}

}

public void endXXX(org.apache.cactus.WebResponse webResponse)

{

 // Assert Result

 […]

}

 Cactus also integrates HttpUnit into the framework. The
HttpUnit implementation of the WebResponse object (com.
meterware.httpunit.WebResponse theResponse) can be used
to verify the HTML response.

public void endXXX(com.meterware.httpunit.WebResponse theResponse)

{

WebTable table = theResponse.getTables()[0];

assertEquals("rows", 4, table.getRowCount());

assertEquals("columns", 3, table.getColumnCount());

assertEquals("links", 1, table.getTableCell(0, 2).getLinks().

length);

}

Testing JSP Tag Libraries
 For testing JSP Tag libraries,
extend your test case class
from JspTestCase. In addition
to the servlet implicit objects,
JspTestCase provides the
following implicit objects: out
(JspWriter) and pageContext
(PageContext). These implicit Figure 1 Cactus System

1. beginXXX()

10. endXXX()

2

9

Cactus Test Case
Redirector

Proxy Cactus Test Case

Class Under
Test

3

8 6

4. setUp()
5. testXXX()
7. tearDown()

Client-side server-side

www.SYS-CON.com/JDJ30 August 2004

objects are made available to the setUp, tearDown, and textXXX
methods as instance variables of the JspTestCase class.
 To test the tag handler, use the implicit objects provided by
the JspTestCase to set up initial state for the test. Then create
and initialize your custom tag using the pageContext implicit
object. After setting up the tag, call the tag life-cycle methods in
the correct order and verify the results. The tag’s output can be
inspected in the endXXX method.
 Complete the following to set up the custom tag for testing:
1. Create the custom tag and initialize it with the pageCon-

text implicit object:

MyTag tag=new MyTag();

// pageContext is available as an implicit object to JspTestCase

tag.setPageContext(pageContext);

2. Set the tag’s attributes:

tag.setNum1(“10”);

tag.setNum2(“11”);

3. Set the parent tag (optional):

Tag.setParent(enclosingTag);

 The “enclosingTag” will have to be instantiated and set up
 as well. This will allow the tag to successfully call the method
 getParent.
4. Create the BodyContent object (optional): If the tag pro-

cesses its body, call pageContext.pushBody() to obtain a
BodyContent and the corresponding pageContext.pop-
Body() after the tag completes execution.

5. Set up page state (optional): Set up appropriate objects into
the request or pageContext for use by the tag.

 Once the tag has been set up, test the tag by calling its relevant
life-cycle methods and using JUnit assert API to verify the results.

Verifying Individual Methods
 You can verify a tag that conditionally includes its body
based on some values:

tag.setValueThatResultsInIncludingBodyContent(“Correct Value”);

assertEquals(Tag.EVAL_BODY_INCLUDE,tag.doStartTag());

Verifying Tag Output
 The custom tag output can easily be verified in the endXXX
method of the test case.

Testing Iteration Tags
 You can test a tag that repeats its body output a number of
times as shown:

// […] set up tag state

int count=0;

do

{

 count++;

} while (tag.doAfterBody() == Tag.EVAL_BODY_AGAIN);

assetEquals(EXPECTED_RESULT,count);

Testing Body Tags
 For testing tags with body content you must replicate the
life cycle of the tag in your test code. Use the page context
implicit object to obtain and release a BodyContent object:

tag.setPageContext(pageContext);

tag.doStartTag();

// if the doStartTag method return EVAL_BODY_TAG

BodyContent bodyContent=pageContext.pushBody();

tag.setBodyContent(bodyContent);

tag.doInitBody();

bodyContent.println(“Sample content”);

tag.doAfterBody();

tag.doEndTag();

pageContext.popBody();

 Implement the endXXX method to verify whether the tag
returns the expected body content or not.

Testing Filter
 Your test case class should extend from FilterTestCase when
you want to test servlet filters. Cactus automatically provides
the implicit object filterChain (FilterChain), in addition to all
the servlet implicit objects, to the setUp, testXXX, and tearDown
methods. In your test method, do the following:
1. Instantiate the Filter class.
2. Set up the required request parameters.
3. To simulate the next filter in the filter chain, define a mock

filter chain inner class.
4. Invoke the doFilter method. Pass the mock filter chain

object as a parameter to doFilter if you need to verify if the
filter is returning to the correct filter in the chain.

Testing EJB
 EJBs can be tested from any of the Cactus redirectors. From the
testXXX method, obtain the home reference to your EJB, create an
instance of it, invoke the method to test, and finally assert the result.

Running Cactus Tests
 Cactus provides a ServletTestRunner to run the Cactus tests
using a browser. In addition to the Cactus redirectors, you’ll also
need to map this servlet in the web.xml file of your Web applica-
tion. Once the Web application is deployed, you can run your
application using the URL http://server:port/webapp/Servlet
TestRunner?suite=SimpleTestServlet. This assumes that the class
SimpleServletTest has a static method suite that will provide the
test runner with a TestSuite that it can run. The test runner will
return the test results as XML data to the browser.

Summary
 This article explored the concepts of using the Cactus frame-
work to write unit tests for testing servlets, JSPs, filters, TagLibs,
and EJBs.

References
• Apache Cactus: http://jakarta.apache.org/cactus
• JUnit Framework: http://junit.org/index.htm

Feature

Shrink my development time.

Give me the technology to deliver it

Faster. Better. Easier.

Faster. Outsmart your development deadlines with AMD64 technology.

Better. Direct Connect Architecture lets you do more.

Easier. Your platform choice is simpler, since AMD64 technology
excels across a wide variety of application workloads.

Register at developer.amd.com and enter a drawing for a chance to win
an AMD64 system. See official rules for details and eligibility requirements.

© Copyright 2004 Advanced Micro Devices, Inc. All Rights Reserved. AMD, the AMD Arrow Logo, and combinations thereof, and AMD64 logo are trademarks of Advanced Micro Devices, Inc.

www.SYS-CON.com/JDJ32 August 2004

Interfaces

by York Davis
Dynamic Sorting with Java

T

York Davis is a senior

managing consultant at

Software Architects, Inc. With

more than 12 years in the

software development field,

York has been using Java for

more than five years and

 has extensive experience

building enterprise

application architectures.

ydavis@sark.com

A reusable implementation

hose familiar with the java.util.
Comparator interface of the Java
API realize its capabilities for sort-
ing a collection of objects based

on an attribute of the objects in the
collection. This works well when there
is only a single field in which sorting is
required. When more complex sorting is
necessary, the limitations of sorting on a
single field become obvious. What about
the situation in which a user desires the
functionality to sort selectively on any
field in object collection? This article
describes an implementation of the
Comparator interface that along with
the reflection API allows an object to be
sorted dynamically on any of its publicly
accessible fields.

Problem Statement
 Let’s describe the problem a bit more
specifically. A collection of employee
Transfer Objects (EmployeeTO class)
exists. (For a description of the Transfer
Object design pattern consult a software
design pattern book.) Each EmployeeTO
in the collection is a data container object
for a single employee’s information. For
this example, our simplified EmployeeTO
object contains only three pieces of data
– employee ID, last name, and salary.
 A Human Resources application also
exists that uses this collection to display a
list of all employee data to HR applica-
tion users. The users of this system have
the following requirements:
1. Allow sorting on any field on the report
2. Allow control of the sort order

Simple Solution
 Before delving into our dynamic sort-
ing solution that allows sorting on any
attribute, let’s first look at a simple solu-
tion that supports sorting on a single
attribute only. This will demonstrate
the basic behaviors of Comparator
and from this we’ll be able to glean the
improvements we wish to make. This
solution utilizes the more common use
of the Comparator interface. There are
two classes required to implement this.

EmployeeTO – Simple Version
 First, our EmployeeTO can be made
sortable by implementing the Compara-
tor interface as shown in Listing 1. In
addition to the getters and setters for ID,
last name, and salary, EmployeeTO must
implement the compare() and equals()
methods in order to meet the Compar-
ator’s requirements. These methods
define how EmployeeTO is to be sorted.
The compare() method takes two pa-
rameters, both of type Object. Note that
compare() returns an int. This return
value tells the sort engine the collating
sequence equality of two attribute values
from each of the object parameters
passed to compare(), respectively. We
need to write the code that performs this
evaluation. The first step in compare()
is to cast the two parameters’ objects to
EmployeeTO objects and extract the em-
ployee IDs by calling the getId() method
on each object in turn. Now we can
compare the values. There are really only
three possible outcomes that can result
from this comparison. Table 1 describes
the results based on these outcomes.
 The other method we must code
is the equals() method. Although
this method is not used for sorting, it
must be implemented in order to meet
the contract of the Comparator interface.

Sorting the Collection – Simple Version
 The SimpleTest class in Listing 2 adds
three EmployeeTO objects to a List,
then performs a sort on that Collection.
(Listings 2–5 can be downloaded from
www.sys-con.com/java/sourcec.cfm.)
Line 30 of SimpleTest calls the static
sort() method of the Collections class to
actually perform the sort as follows.

 Collections.sort(elements, new

EmployeeTO());

 The first parameter passed to sort()
is the collection object we wish to have
sorted. The second parameter is an object
of type Comparator that contains the
customized sorting logic – in this case
EmployeeTO, which implements the
Comparator interface. We certainly could
have passed any instance of EmployeeTO
as the second parameter to the above
method call. However, instead of reusing
one of the three values initially added to
the collection, I chose to pass a new in-
stance of the class for purposes of clarity.
 A quick note on encapsulation and
responsibility assigning seems to be in
order here. In this case, it makes sense
to encapsulate the specific compare()
method sorting logic within Employee-
TO. With the information we have thus
far, EmployeeTO is the only class that
requires the knowledge of how it should
be sorted. Later, as a dynamic sort-
ing solution is provided, we’ll see this
sorting logic moved out of the Transfer
Object class as the sorting logic be-
comes less specific to any one particular
Transfer Object implementation.
 This implementation will run but
falls short when it comes to meeting
the user’s requirements. Remember, we
need to be able to sort on any one of the
three fields in EmployeeTO based on a
user’s choice. And let’s not forget about
the ability to control the sort order.

Enhancement Options
 Let’s think about the options that
are available to improve what we have
and meet the requirements. One option
is to code nested if/else statements
in our compare() method to allow for
sorting on any field in the object based
on some field name parameter passed
to EmployeeTO. The problem with this
solution is that it’s difficult to maintain

 Table 1 Return values from compare() method

Comparison Return Value
ID from Object 1’s collation sequence equal to ID from Object 2’s collation sequence 0

ID from Object 1’s collation sequence less than ID from Object 2’s collation sequence -1
ID from Object 1’s collation sequence greater than ID from Object 2’s collation sequence 1

33August 2004www.SYS-CON.com/JDJ

and the code could get rather lengthy as
well. If new fields are added to Em-
ployeeTO, we must update compare()
appropriately.
 What we would really like to do is
invoke any given getter method of our
Transfer Object at runtime without
having to specifically hard code each
possible method call in the compare()
method. If we could do this, we could
use the results of those method calls
to dynamically determine equality. In
addition, it would be desirable if this
dynamic sorting could be reused for any
Transfer Object. The good news is that
this functionality can be achieved by le-
veraging the reflection API and the flex-
ibility of the Collections.sort() method.

Reflection
 The java.lang.reflect.Method class
provides the ability to invoke a method
of a given object based on the value
of a string. For example, using a string
containing the value “getId”, the method
getId() of EmployeeTO can be dynami-
cally invoked at runtime. This string
value can then be changed as we wish to
cause any of the methods of Employ-
eeTO to be called.
 The reflection API provides a variety
of interesting features including the
ability to pass parameters to methods
and the ability to determine method
return types. (For a complete list of
these capabilities, consult the Java
API Javadoc.) We will need the latter
capability as the three getter methods
of EmployeeTO return different types
and it will thus be necessary to be aware
of which type we have when doing the
comparison in the compare() method.
For example, we’ll need to code a differ-
ent sort of equality test on an int return
value as opposed to a string.

java.util.Collections.sort()
 A dynamic solution will also need
to take advantage of the flexibility of
the Collections.sort() method. Recall
that in our simple sorting solution we
passed an instance of an object that
implemented the Comparator interface
as the second parameter to Collections.
sort(). In that case, it was the Employ-
eeTO object that contained the sorting
logic. This worked great for what we
needed it to do. Now, however, we want
something a bit more sophisticated and
flexible. What if we were to create a class
that implemented Comparator, which
was separate from each Transfer Object?
In it we could place our dynamic sorting

code and simply pass an instance of this
new class as the second parameter to
Collections.sort().
 Doing this would cause several desir-
able results. First, we’ll have completely
decoupled any sorting logic from our
Transfer Objects. This is highly desirable
as it decreases not only the size of each
Transfer Object by essentially eliminat-
ing the need for sorting code, but also
removes the need for coding individual
field comparison logic. Second, we’ll
have created a reusable utility class that
can be used in many different situa-
tions where sorting is required. While
reusability is not a specifically stated
user requirement for our design, it is
certainly desirable.

Dynamic Solution
 Figure 1 is a UML diagram (with
attribute and method details omitted)
that shows how the components of both
the simple and the dynamic sorting
solutions fit together. Really, the only
portion that has changed since our
simple solution is where the Compara-
tor interface gets implemented. In the
first example, EmployeeTO implement-
ed Comparator directly. Now Dynamic-
Comparator implements Comparator
and contains an intelligent implemen-
tation of the compare() method that
can be used by any class that requires a
collection of objects to be sorted.

DynamicComparator
 Listing 3 shows the completed code
listing for DynamicComparator. There
are a number of interesting things about
this class. First, note the class signature.
The class implements two interfaces
– Comparator and Serializable. Com-
parator should come as no surprise
since that interface is the essence of the
sorting capabilities we desire. Also, al-
though not a requirement, the API docs
recommend that any class implement-
ing Comparator implement Serializable
as well.
 Second, look at the static sort()
method. Classes wishing to utilize Dy-
namicComparator will call this method
rather than Collections.sort(). I’ve
decided to make sort() static to mimic
the Collections.sort() method. Although
the DynamicComparator.sort() method
is called statically, internally Dynam-
icComparator creates an instance of
itself. This is necessary in order for
it to provide access to the nonstatic
compare() and equals() methods of the
Comparator interface that it supports.

Next note how this method takes three
parameters. The first is the collection
object to be sorted. The second is a
string that defines the field of each
object in the collection on which sorting
should be performed. The last param-
eter is a Boolean specifying the sort
order. These three parameters are used
as arguments to create a new instance of
DynamicComparator that is the second
parameter passed to the Collections.
sort() method.
 Third, take a look at the compare()
method. This is where the reflection
code really kicks in. One of the first
things we need to obtain is a refer-
ence to a method object at line 43.
We’ll use this reference to call methods
dynamically. This task is done using
the getMethod() helper method, which
obtains this value via reflection. Next,
we need to determine the return type
of the methods we are about to call. Re-
member that we will need to compare
the attribute values of the two objects
passed into compare(). If the return type
is an int, for instance, we’ll certainly
have to write different code to do the
comparison than if the return type is a
string. Once we have the return type,
we examine it and, based on its value,
dynamically perform the actual method
invocation and resulting comparison of
the two values.
 Note that currently there are three
separate “if” test blocks – one each for

 Figure 1 UML diagrams for simple and dynamic sorting scenarios

www.SYS-CON.com/JDJ34 August 2004

string, int, and double. The implemen-
tation requires comparison logic for
any method return type we expect to
encounter. For the range of return types
in our EmployeeTO example, these
three are sufficient. However, addi-
tional code would need to be added to
DynamicComparator if comparisons
of other types are required – short, java.
util.Date, java.math.BigDecimal, etc.
Coding for each specific return type
here is unavoidable as there is no way to
dynamically cast Java objects. Similarly,
Java-supplied nonobject data types like
int, long, and double use entirely differ-
ent comparison operators than do first-
class object types like String or Date.
 There are some other important
points about this code. First, Dynamic-
Comparator fully supports null values. If
either or both of the arguments passed
to compare() are null, this method
knows how to handle the situation ac-
cordingly. Second, look at each return
statement within compare(). Remember
the requirement that the user be able to
control not only the sort field but also
the sort order? This code supports the
latter by essentially reversing the default
sort order with a call to getSortOrder().
This is done if the user has decided
to sort the result in descending order
based on the Boolean value passed into
the constructor from the sort() method.
Third, the constructMethodName()
method converts a Transfer Object
attribute name string into a method
name by prepending a “get” string and

capitalizing the first character of the
passed value. For instance, construct-
MethodName() would convert “salary”
to “getSalary”.
 Last, the equals() method is needed
to complete the interface requirements.

EmployeeTO – Enhanced Version
 Listing 4 shows the enhanced ver-
sion of EmployeeTO. The most obvious
change is that EmployeeTO is now
even simpler than before. Now that all
of the sorting logic has been moved to
DynamicComparator and the class no
longer implements Comparator, we
don’t need to implement the compare()
and equals() methods.

Sorting the Collection –
Dynamic Version
 Listing 5 is the code for Dynamic-
Test. The only change between this class
and SimpleTest is how the sort is called.
Here we pass the three parameters to
DynamicComparator.sort() (Collec-
tion Object, the decapitalized attribute
name, and sort ascending flag) and let
the DynamicComparator do the rest.
 DynamicTest could just as easily have
sorted on last name by passing “last-
Name” or on employee ID by passing
“id” as the second parameter on line 29.

Solution Discussion
 Building a class such as Dynamic-
Comparator has many benefits in an
application that requires robust sorting
capabilities. In this design, we have

created a reusable, loosely coupled API
that can be used to sort a collection of
objects based on getter methods. The
sort field is easily configurable and also
allows control over the sort order.
 This design, however, is not with-
out trade-offs. Although using the
reflection API allows us to do lots of
cool things, using reflection can slow
performance. This is particularly true
in applications using pre-1.4 versions
of Java. In addition, it’s possible that
applications wishing to sort very large
collections may find DynamicCom-
parator too slow.
 Other inadequacies of DynamicCom-
parator might become evident as well.
Although it allows sorting on any one
attribute of a collection of objects in an
easily configurable manner, Dynam-
icComparator does not address the
potential need to sort by multiple fields
– primary and secondary field sorts
like that occur automatically with the
ORDER BY clause in Structured Query
Language (SQL).

Conclusion
 This article introduced a reusable
implementation of the Comparator
interface that utilizes Java reflection to
dynamically sort a collection of objects
on any one of any number of fields
within that object.
 If your application or framework
has a need for this specific functional-
ity, perhaps this design will fit your
needs.

Interfaces

Listing 1
package simple;

import java.util.Comparator;
import java.io.Serializable;

public class EmployeeTO implements Comparator, Serializable {
 private int id;
 private String lastName;
 private double salary;

 public int getId() {
 return id;
 }

 public String getLastName() {
 return lastName;
 }

 public double getSalary() {
 return salary;
 }

 public void setLastName(String string) {
 lastName = string;
 }

 public void setSalary(double d) {
 salary = d;
 }

public void setId(int i) {
 id = i;
 }

 public int compare(Object o1, Object o2) {
 EmployeeTO emp1 = (EmployeeTO) o1;
 EmployeeTO emp2 = (EmployeeTO) o2;

 int id1 = emp1.getId();
 int id2 = emp2.getId();

 if (id1 == id2) return 0;
 if (id1 < id2) return -1;
 if (id1 > id2) return 1;

 return 0;
 }

 public boolean equals(Object o) {
 return true;
 }

 public String toString() {
 return "id="+ id +
 " lastname="+lastName+
 " salary="+salary;
 }
}

www.SYS-CON.com/JDJ36 August 2004

hough most Java developers
think of the Java Native Inter-
face (JNI) as a framework for
developing native libraries that

can be called from Java, relatively few
know that JNI also supports com-
munication in the reverse direction:
it provides native programs written in
C with the ability to call Java objects.
However, the coding is thorny; logic
that can be coded readily in a few lines
of Java requires several times more
lines of C, thanks to JNI’s granular
programming model and peculiar
approaches to exception handling
and garbage collection. This article
explores the nature and typical use of
the C-to-Java JNI interface and pres-
ents the design of a framework that
eases the programming effort.

The JNI Architecture
 As Figure 1 illustrates, JNI is actually a
pair of APIs:
• “JNI Proper” supports the manipula-

tion of Java objects and classes, such
as the ability to call object methods.

• The Invocation API is a smaller C
library that enables C programs to
create and destroy a Java Virtual
Machine (JVM).

 A C-to-Java program (that is, a C pro-
gram that uses Java) calls the Invocation
API to create a JVM, and calls JNI Proper
to use Java objects. As for the Java-to-C
direction (not discussed in this article),
Java code calls a native method, which
is implemented as a C native library
function; the C code uses JNI to inter-
pret its Java input types and build its
Java output types.
 The JVM is packaged as a shared
library (“jvm.dll” in the Sun SDK on
Windows platforms and “libjvm.so” on
Solaris) and exposes JNI Proper and the
Invocation API as public exports. As a
runtime entity, a JVM is really just the
JVM library linked to an executable C
program. Any Java developer can code

such a program, e.g., “myCtoJProgram.
exe”, shown in Figure 2. Interestingly,
the famed SDK C program known as
the “launcher” (java.exe on Windows,
Java on Solaris) is written in just the
same way (for more, see sidebar JNI
Case Study: Java Launcher). Complet-
ing the picture are native libraries, such
as “myNative.dll”, whose functions can
be called from Java; these libraries are
linked to the runtime process alongside
the JVM.

A C-to-Java JNI Design: The Zip Example
 The launcher is the best-known
example of a C program that uses
the JNI’s C-to-Java interface; its pur-
pose is to house a JVM and boot-
strap a Java application on the JVM
by calling the application’s main
method. Other, less obvious exam-
ples are C programs that require
functionality whose best or only
implementation is Java objects
that must be called “in process.”

JNI

by Michael Havey

Calling Java from C

T

Michael Havey

is a BEA consultant

with nine years of

industry experience,

mostly with application

integration.

mhavey@bea.com

A framework for easier JNI

 Table 1 Summary of C code to list contents of a zip file

Step Description JNI Usage
1 Initialize the JVM JNI_CreateJavaVM(), preceded
 by several lines of code to set
 up JVM arguments.

 2 Get references to classes ZipFile, ZipEntry FindClass().
 and Enumeration Remember JVM expects
 package names using slashes
 instead of dots (e.g., java/util/
 Enumeration rather than java.
 util.Enumeration).
 3 Get references to several methods: ZipFile constructor, GetMethodID(). Method
 ZipFile.entries(), ZipEntry.getName(), Enumeration.has signatures are expressed in an
 MoreElements(), Enumeration.nextElement(). unusual notation understood
 by the JVM (e.g., “()Z” means
 “returns a boolean”).
 4 Instantiate ZipFile NewStringUTF() to convert C
 string to Java string, New
 Object() to instantiate, New
 GlobalRef() and DeleteLocalRef()
 to get global reference to zip
 file object.
 5 Call ZipFile.entries() CallObjectMethod() to call the
 method, NewGlobalRef() and
 DeleteLocalRef() to get global
 reference to enumeration
 object.
 6 In loop, exit when Enumeration.hasMoreElements() CallBooleanMethod()
 returns false.
 7 Get next element, expecting ZipEntry object CallObjectMethod()
 8 Call ZipEntry.getName() CallObjectMethod() to call the
 method, GetStringUTFChars()
 and ReleaseStringUTFChars() to
 convert Java string to C string.

 9 Cleanup FreeGlobalRef() to release
 ZipFile and ZipEntry objects,
 DestroyCurrentThread() and
 DestroyJavaVM() to destroy JVM
 connection.

37August 2004www.SYS-CON.com/JDJ

Examples include programs that:
• Create, extract, or list the contents

of zip files. The Java SDK java.util.
zip package is the most suitable API
available.

• Transform XML to XML, HTML, or
PDF. Though C XML APIs exist, Java’s
support for XML is vastly superior.
Launching a JVM to do XML with
Java is a plausible strategy for a C
program.

• Call an Enterprise JavaBean (EJB).
The C program uses JNI to execute
standard EJB client-side logic.

 The example of listing the contents of
a zip file highlights the coding challenge
of C-to-Java JNI. (Source code for this
article can be downloaded from www.
sys-con.com/java/sourcec.cfm.) The
Java code to perform this logic, shown
in Listing 1, is trivial: line 4 instantiates
the class ZipFile in java.util.zip, passing
the zip file name to the constructor;
lines 5–9 loop over a java.util.Enumera-
tion of java.util.zip.ZipEntry objects
getting, in line 8, the name of each entry
in the zip file.
 Developing the equivalent logic in C
requires hundreds of lines of code. The
main steps are summarized in Table 1.

Listing 2 shows the code for steps 7 and
8; the JNI calls in lines 5, 10, 15, and 21
are followed by calls in lines 7, 11, 16,
and 22 to the checkException() function
(implementation not shown), which in
turn calls the JNI exception handling
functions ExceptionCheck(), Excep-
tionDescribe(), and ExceptionClear()
to swallow and report Java exceptions
triggered by the JNI calls.
 The C code in the zip example can be
made easier and less cumbersome by
using two design patterns:
1. Java Proxy: Put the hard code where

it belongs, on the Java side. Develop
a Java object, called a proxy, that per-

forms complex logic on behalf of the
C code. The C code need only call the
proxy.

2. C Façade: Hide JNI’s peculiar pro-
gramming model in a C façade library.
Have the C program call the façade
rather than JNI directly. In addition,
build proxy support into the façade;
expose façade functions to call the
proxy.

 The proxy and façade constitute
an abstract framework for use in any
program resembling the zip program.
Java proxies implement the interface
shown in Listing 3; the execute()

 Figure 1 C to Java, Java to C with JNI

C Native Library

Invocation API
create JVM
destroy JVM

attach current thread
detach currrent thread

JNI Proper:
load classes

instantiate objects
call class and object methods
get/set object and class fields

manage exceptions
manage object references
string and array helpers

Java Code

C-to-Java Program

<<call>>

<<call>>

<<call>>

<<call>>

<<uses>>

Tools that help you understand and
maintain impossibly large bodies of
source code.

www.SYS-CON.com/JDJ38 August 2004

method is defined generically as accept-
ing an input, performing some action or
set of actions, and returning an output.
Listing 4 shows the proxy implementation
for the zip example. The execute() method
expects as input a string specifying the
name of the zip file (line 26); it imple-
ments logic similar to that in Listing 1 to
enumerate the entries in the zip file (lines
26–33) and returns a string containing the
name of the entries in a pipe-delimited
list (see lines 30–32 and 35). The method
could also have returned an array or Java
collection type, but the calling C program
is likely happier parsing a string than con-
tending with JNI array or collection class
iteration logic.

 If the C zip program were to call
the proxy using JNI directly, its length
would be shorter but the complexity
of JNI would remain. Using the façade
reduces the length even further and
shields the code from JNI oddities. A
design for the façade is depicted in
Figure 3. The façade consists of a set
of data types, modeled as C struc-
tures, and a set of functions. The data
types represent entities such as JVM
(cjJVM_t), class (cjClass_t), method (cj-
Method_t), and object (cjObject_t). The
functions are operations performed on
the entities (e.g., cjJVMConnect() and
cjJVMDisconnect() performed on the
JVM), and a special set of proxy opera-

JNI

Listing 1: Java code to list contents of a zip file
1 import java.util.zip.*;
2 import java.util.Enumeration;
3
4 ZipFile zf = new ZipFile(zipFileName);
5 Enumeration entries = zf.entries();
6 while(entries.hasMoreElements())
7 {
8 String entry = ((ZipEntry)(entries.nextEle-
ment())).getName();
9 }

Listing 2: Excerpt of C code to list contents of zip file
1 int zipEntry(char *csEntryName)
2 {
3 jboolean isException;
4 jstring jsEntryName;
5 jobject oZipEntry = (*jni)-
>CallObjectMethod(jni, oZipEntries,
6 midEnumNextElement);
7 isException = checkException();
8 if (isException || oZipEntry == NULL) return
0;
9
10 jsEntryName = (*jni)->CallObjectMethod(jni,
oZipEntry, midZipGetName);
11 isException = checkException();
12 if (isException || jsEntryName == NULL)
return 0;
13 else
14 {
15 const char *tempData =(*jni)-
>GetStringUTFChars(jni, jsEntryName, 0);
16 isException = checkException();
17 if (tempData == NULL || isException)
return 0;
18
19 // copy to caller's buffer and release the
UTF
20 strcpy(csEntryName, (char*)tempData);
21 (*jni)->ReleaseStringUTFChars(jni, jsEn-
tryName, tempData);
22 isException = checkException();
23 return (!isException);
24 }
25 }

Listing 3: CJProxy
1 package cj;
2
3 public interface CJProxy
4 {
5 public Object execute(Object args) throws
Exception;
6 }

Listing 4: Java zip proxy
1 package cj.example;
2
3 import cj.CJProxy;
4 import java.io.*;
5 import java.util.zip.*;
6 import java.util.Enumeration;
7
8 /**
9 * CJZipList is a CJProxy that lists the entries
in a zip file.
10 */
11 public class CJZipList implements CJProxy
12 {
13 /**
14 * Proxy execute takes a string with the
name of the zip file.
15 * It returns a pipe-delimited string with
the list of entries
16 * in the zip file.
17 */
18 public Object execute(Object args) throws
Exception
19 {
20 if (!(args instanceof String))
21 {
22 throw new RuntimeException("Invalid
type for execute");
23 }
24
25 StringBuffer retbuf = new
StringBuffer("");
26 ZipFile zf = new ZipFile((String)args);
27 Enumeration entries = zf.entries();
28 while(entries.hasMoreElements())
29 {
30 String entry = ((ZipEntry)(entries.
nextElement())).getName();
31 retbuf.append(entry);
32 retbuf.append("|");
33 }
34
35 return retbuf.toString();
36 }
37 }

 Figure 2 JNI Components: JVM, native libraries, programs

Java.exe

myNative.dll

jvm.dll

myCtoJProgram.exe

Method JNI Usage Description
 CjJVMConnect JNI_CreateJavaVM Creates a JVM based on options specified
 by the caller.
 CjJVMDisconnect DetachCurrentThread, Destroys the JVM.
 DestroyJavaVM
 CjClassCreate FindClass, GetMethodID Gets a reference to a given Java class and
 references to each of the methods specified
 by the caller.
 CjClassDestroy Cleans up resources created in cjClassCreate()
 CjProxyClassCreate See cjClassCreate Gets a reference to a Java class that
 implements the JavaProxy interface. The
 implementation calls cjClassCreate() passing
 the name of the class that implements the
 interface and the names and signatures of
 the init, shutdown and execute methods of
 JavaProxy.
 CjProxyCreate NewObject, NewGlobalRef, Instantiates a JavaProxy class and acquires
 DeleteLocalRef a global reference to it.
 CjProxyDestroy See cjFreeObject Releases global reference to the proxy
 created in cjProxyCreate().
 CjProxyExec CallObjectMethod, NewGlobalRef, Invokes the execute() method of the
 DeleteLocalRef JavaProxy object created in cjProxyCreate().
 Acquires a global reference to the object
 returned by the execute() method.
 CjFreeObject DeleteGlobalRef Releases the global reference to an object.
 CjProxyExecString NewStringUTF, cjProxyExec, Get- Calls the proxy’s execute() method,
 StringUTFChars, ReleaseStringUTF- passing a Java string, converted from the
 Chars C string passed by the caller. The execute()
 method returns a Java string, which the
 function converts to a C string and returns
 to the caller.

 Table 2 CJ C API Functional Description

39August 2004www.SYS-CON.com/JDJ

tions. Table 2 describes and lists the JNI
usage of each of the C functions.
 Listing 5 is the complete source code
of the C zip program that uses the proxy
and façade. (Listing 5 can be downloaded
from www.sys-con.com/java/sourcec.
cfm.) The program launches a JVM (line
26), gets a reference to the proxy class
(line 29), instantiates it (line 33), and
calls the execute() method (line 36). The
remaining code (lines 40–50) cleans up
the proxy object and class and destroys
the JVM.

Conclusion
 Hosting the hard logic in a Java proxy
and wrapping JNI calls to the proxy in a
C façade reduces the complexity of C-to-
Java programming with JNI.

References
• “Java Native Interface Specification,”

Sun Microsystems: http://java.sun.
com/j2se/1.5.0/guide/jni/spec/jni-
TOC.html

• “Tutorial on JNI,” Sun Microsystems:
http://java.sun.com/docs/books/tuto-
rial/native1.1/concepts/index.html Figure 3 C to Java, Java to C with JNI

<<c struct>>
cjClass_t

-jvm : cjJVM_t
-className : cstring
-methods : cjMethods_t
-jniClass : jclass

-name : cstring
-sig : cstring
-jniMethodID : jmethodID

<<c struct>>
cjMethod_t

<<c struct>>
cjJVM_t <<c struct>>

cjObject_t
-argc : int
-argv : cstringArray
-jniJavaVM : JavaVM
jniJNIEnv : JNIEvn

-class : cjClass_t
-jniObject : jobject

1 *

+cjVMConnect(inout jvm : cjVM_t) : int
+cjVMDisconnect(inout jvm : cjJVM-t) : int
+cjClassCreate(inout class : cjClass_t) : int
+cjClassDestroy(inout class : cjClass_t) : int
+cjFreeObject(in jvm : cjJVM_t, in object : object) : int
+cjProxyClassCreate(inout class : cjClass_t, in className : cstring, in jvm : cjJVM_t) : int
+cjProxyCreate(inout proxy : cjObject_t) : int
+cjProxyExecute(in proxy : cjObject_t, in inData : jobject, out outData : jobject) : int
+cjProxyExecString(in proxy : cjObject_t, in inData : cstring, out outDatat : cstring) : int

<<interface>>
CJ C API

www.SYS-CON.com/JDJ40 August 2004

 Every Java developer who uses the Sun SDK is grateful for
the C program known as the launcher (its executable name is
“java”), which uses the JNI Invocation API to create a JVM, load
a Java class into the JVM, and call its main() method, thereby
launching a Java application on behalf of the caller. If the
launcher did not exist, a good C developer with JNI knowledge
could write an equivalent program in less than a week.
 The launcher’s source code is available from Sun and
is packaged with the SDK (version 1.4.2_04, which can be
downloaded from http://java.sun.com/j2se/1.4.2/down-
load.html). In the base directory of the installed SDK is
a file called src.zip. If you extract that file, the exploded
“launcher” directory contains the four source files that
constitute the launcher program: java.h, java.c, java_md.h,
and java_md.c. The launcher’s source code is unmistakably
C: murky, idiomatic, and circuitous. On the other hand,
the end result is a functional program that has been run
successfully innumerable times by innumerable users.
Understanding how it works is a case study in the use of JNI.
 Suppose there is a class called Hi in the package com.
mike that has a public main() method and thus can be
started as a Java application through the launcher. The
following is the source code:

1 package com.mike;
2
3 Public class Hi
4 {
5 public static void main(String args[])
6 {
7 …
8 }
9 }

 The Hi application is started under SDK 1.4.2_04 on
Windows 2000 with the following commands:

1 set JAVA_HOME=c:\j2sdk1.4.2_04
2 set _JAVA_LAUNCHER_DEBUG=true
3 %JAVA_HOME%\bin\java -classpath src -Xms32m -
Xmx64m -Dmy.property=1 com.mike.Hi arg1 arg2

 Line 3 calls the launcher executable Java in the bin direc-
tory of my SDK (which, as line 1 indicates, is c:\j2sdk1.4.2_
04). The arguments passed to the launcher are:
• -classpath src: Look for my “Hi” class in the directory src.
• -Xms32m: Set its minimum heap size to 32MB.
• -Xmx64m: Set the maximum heap size to 64MB.
• -Dmy.property=1: Make a property available to the appli-

cation with the key my.property and value 1.
• com.mike.Hi: Run the application in this class.
• arg1 arg2: Pass arguments “arg1” and “arg2” to the

application’s main method.

 Line 2 sets an environment variable called _JAVA_
LAUNCHER_DEBUG, which causes the launcher to gener-
ate debugging output to the console at runtime:

1 ----_JAVA_LAUNCHER_DEBUG----
2 JRE path is c:\j2sdk1.4.2_04\jre
3 jvm.cfg[0] = ->-client<-
4 jvm.cfg[1] = ->-server<-
5 jvm.cfg[2] = ->-hotspot<-
6 jvm.cfg[3] = ->-classic<-
7 jvm.cfg[4] = ->-native<-
8 jvm.cfg[5] = ->-green<-
9 1306 micro seconds to parse jvm.cfg
10 JVM path is c:\j2sdk1.4.2_04\jre\bin\client\
jvm.dll

11 5571 micro seconds to LoadJavaVM
12 JavaVM args:
13 version 0x00010002, ignoreUnrecognized is
JNI_FALSE, nOptions is 6
14 option[0] = '-Djava.class.path=.'
15 option[1] = '-Djava.class.path=src'
16 option[2] = '-Xms32m'
17 option[3] = '-Xmx64m'
18 option[4] = '-Dmy.property=1'
19 option[5] = '-Dsun.java.command=com.mike.
Hi arg1 arg2'
20 125113 micro seconds to InitializeJVM
21 Main-Class is 'com.mike.Hi'
22 Apps' argc is 2
23 argv[0] = 'arg1'
24 argv[1] = 'arg2'
25 32937 micro seconds to load main class
26 ----_JAVA_LAUNCHER_DEBUG----

 The launcher begins by finding the JRE (line 2) and the
right JVM (lines 3–10), and then loads the JVM dynamically
(line 11); as we’ll see, this logic is platform dependent. In
this case, because we didn’t name a specific JVM when
calling the launcher, the launcher defaults to “client” (more
on this below). Lines 12–19 show the arguments that the
launcher will pass to the JVM; these correspond to the
arguments passed to the launcher. In line 20, the launcher
starts the JVM. The class whose main method that launcher
will call is given on line 21; the arguments passed to it are
shown in lines 22–24.
 The launcher’s logical design (as of version 1.4.2_04) is
depicted in Figure 4.

 The launcher consists of two modules: java.c, which
contains the main function of the launcher program
as well as platform-independent helper functions, and
java_md.c, which houses platform-specific functions.
The modules share a bidirectional dependency:
func-tions in java.c call java_md.c and vice versa; for
example, main() in java.c calls CreateExecutionEnviron-
ment() in java_md.c, which in turn calls ReadKnown-
VMs() in java.c.
 The source code in java_md.c is different for each
SDK platform release. For example, the Windows SDK
has the Windows version of java_md.c but does not
have the Solaris version. If you want to see both (as I did
as I was writing this article), you must download both
releases.
 The main steps in the launcher’s processing are the
following:
1. Create the execution environment: The CreateEx

ecutionEnvironment() function, implemented in
java_md.c, is a platform-specific search for the
JRE path, JVM path, and JVM type for use by the
launcher. The Windows version looks up the JRE
path in the registry (on my machine, the registry
key HKEY_LOCAL_MACHINE\Software\JavaSoft\Java
Runtime Edition\1.4\JavaHome is C:\Program Files\

 Java\j2re1.4.2_04), and then checks whether the J

 VM type selected by the caller (corresponding
to “-client” or “-server” launcher command-line
options) is one of the allowable types listed in
the file JREPath\lib\Arch\jvm.cfg (on my machine
“Arch” is “i386”). If the caller did not specify a JVM
type, the launcher defaults to the first type listed
in jvm.cfg (on my machine it’s “client”). The JVM
path on Windows is JREPath\bin\JVMType\jvm.
dll (e.g., JREPath\bin\client\jvm.dll for the client
JVM).

2. Load the JVM dynamically: Whereas most programs
let the operating system implicitly link shared librar-
ies to their processes, the launcher, which allows the
user to specify at runtime which version of the JVM
library to use (the “-client” or “-server” command-line
arguments to the launcher), explicitly loads the JVM
library using a platform-specific interface. The logic
resides in java_md.c’s LoadJavaVM() function. On
Windows, this function calls the Win32 LoadLibrary()
to load the JVM DLL and link it to the launcher pro-
cess, and then calls the Win32 GetProcAddress() func-
tion to get a pointer to the invocation API function
JNI_CreateJavaVM() used in step 4.

3. Prepare JVM runtime options based on command-
line options passed to the launcher: Command-line
options such as –D, -X, and -classpath are assembled
into an array to be passed to the JVM. The launcher
adds an additional property for use by the JVM of
the form -Djava.sun.command=class arg1 arg2 …,
where class is the fully qualified name of the target
class and “arg1 arg2 …” is the list of command-line
arguments to be passed to its main method.

4. Create the JVM: The launcher calls the JVM’s JNI_Create-
JavaVM() function, passing the options prepared above.

5. Load the target class into the JVM by calling the JNI
FindClass() method: The launcher first replaces dots
with slashes in the class name (e.g., it converts com.
mike.Hi to com/mike/Hi) because the JVM expects
slashes instead of dots.

6. Call the main method of the target class: First, the
launcher gets a reference to the main() method by
calling the JNI GetStaticMethodID() function, passing
the class reference acquired in step 5, the method
name (“main”), and the signature (“([Ljava/lang/
String;)V”, the JVM’s peculiar representation of a
void method that accepts an array of java.lang.String
objects). Second, the launcher calls the method via
CallStaticVoidMethod(). The launcher prepares the
string array method input using some of the JNI’s
array functions (NewObjectArray(), SetObjectArrayEle
ment()), and handles exceptions in the main method
using JNI’s ExceptionOccurred(), ExceptionDescribe(),
and ExceptionClear().

7. Shutdown the JVM: This is done by calling the
JNI DetachCurrent-Thread() and DestroyJavaVM()
functions.

 A mystery to many Java developers, the launcher
is nothing more than a little C program that uses the
JNI to initiate a Java application.

JNI Case Study: Java Launcher

Launcher design

<<C code>>
java.c

<<C code>>
java_md.c

<<uses>>

<<uses>>

+main()
+ReadKnownVMs()
+CheckJVMType()
+MemAlloc()

+CreateExecutionEnvironment()
+LoadJavaVM()
+GetArch()
+GetApplicationHome()

 Figure 4

JNI

www.SYS-CON.com/JDJ42 August 2004

un has made two significant
announcements recently in the
Java desktop space: Java Desktop
Integration Components (JDIC)

(https://jdic.dev.java.net) and Java
Desktop Network Components (JDNC)
(https://jdnc.dev.java.net), both of
which are open sourced under an LGPL.

JDIC
 JDIC is essentially about allowing
Swing access to more native platform
resources, such as embedding the op-
erating system’s Web browser in a GUI,
or enabling more control over taskbar
support. I think the goal of elevating
the function point of the end-user’s
experience, so that a Java application
looks and behaves no differently for
other desktop programs, is wonderful.
I won’t belabor the obvious point, but
for me JDIC is a missed opportunity for
bringing Swing and SWT toolkits closer
together, as the latter already provides
native embedded browser and taskbar
support. Both toolkits have farther to
travel along this road, as users demand
more and more platform fidelity from
their programs. All I sincerely hope, for
Java’s sake, is that the decision to forgo
the chance to use the CPL open sourced
SWT as the basis for JDIC was made for
sound business reasons, not bruised
egos.

JDNC
 Java Desktop Network Components is
a project that has always promised to be
successful because its roots lie in trying
to simplify the programming model of
writing GUIs that connect to back-end
databases or services. By implement-
ing JDNC, developers have helpfully
adopted a layered approach.

Swing Extensions
 The extensions include new UI
classes such as JXTable, JXTree, JXEdi-
tor, or JTreeTable. These extend the
basic Swing toolkit to provide a set of
controls that are designed out of the

box to work with data. The JForm class,
for example, is a nicely thought-out
control that helps you easily create a
data-bound set of components. What’s
nice about the Swing extensions is that
they can be used without the rest of
JDNC and, with the sorting and filtering
enhancements, represent a nice turn
of the crank for Swing that any GUI
developer will hopefully benefit from.
Another welcome feature is an overhaul
of the way actions work, allowing more
flexibility. I believe there might be plans
to roll the Swing extension packages
into a future release of J2SE. Such a
move would be great for the general
Swing developer and would provide a
welcome set of base enhancements.

JDNC Components
 These mirror the Swing extensions
with the prefix JN, so for JXTable there is
JNTable, JEditor has JNTable, and so on.
These are standard JavaBeans so they
should be easy to integrate into GUI
builders and intuitive to Java program-
mers; however, rather than subclass
their visual peers, they wrap them
instead. I think this is a great decision,
and is rooted in the desire to simplify
the programming model that currently
includes a lot of low-level properties for
Swing controls. By using delegation, the
API that’s surfaced for the developer is
one designed around the data binding
and access capabilities of the control.
There are some nice new listener
interfaces as well, such as org.jdesktop.
swing.event.ProgressSource that allows
a DataSource to signal the progress and
completion of a long-running task. The
whole experience using the JNCompo-
nents shows that they have been well
thought-out and well implemented.

JDNC Markup Language
 The purpose of this layer is to allow
the nonprogrammer to easily customize
JDNC components using XML. One of
the main benefits I can envisage with
the XML configuration of components

is not that the unskilled developer will
use this in preference to cutting Java
source code. Presumably, said person is
going to be using a GUI builder–like tool
that should be able to hide XML or Java
implementations equally well. XML,
however, offers the advantage of being
easy to create and manipulate at run-
time, so GUI behavior can be manipu-
lated dynamically (perhaps the XML
prepared by a servlet as the result of a
user query) and less hard coding need
occur in the actual client layer. One
of the goals of any large business GUI
application must be to capture as much
as possible in rules and rely less on
hard-coded, bespoke client screen logic.
Having XML prepared by a rule engine
that consumes a model definition of the
application and serves this up to JDNC
to implement the wiring logic might
well be the answer. This could become a
very powerful usage scenario.

Open Source
 JDNC has been released as an open
source project, which is interesting
because it’s outside the usual JSR/JCP
process. I’m very encouraged by this,
as I hope it will benefit from the rapid
progress that other open source proj-
ects have enjoyed, and because the end
users of JDNC are programmers trying
to build business applications using
Swing. It’s an invitation for everyone
who has done this for the last few years
to bring the benefit of their knowledge,
gripes, suggestions, and, ultimately,
code to the table. If you’ve had to build
your own data access framework on
top of Swing, or wished one was there,
I strongly encourage you to visit the
JDNC homepage to become involved in
the project and give the developers the
benefit of your experience and ideas. I
believe JDNC is one of the most excit-
ing things to come along in the GUI
space in any language for many years,
and I think it has the potential to take
Java client programming to a whole
new level.

Desktop Java Viewpoint

Joe Winchester
Desktop Java Editor

Swing Low, Swing High,
Sweet Desktop

S

Joe Winchester is a

software developer

working on WebSphere

development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

www.SYS-CON.com/JDJ44 August 2004

n the late 1990s, a GUI design pattern emerged for

choosing multiple objects from long lists. In GUI Design

Essentials, Susan Weinschenk, Pamela Jamar, and Sarah

Yeo called this the Selection Summary pattern. In “A Dual

Listbox Selection Manager” by Steve Aube, it’s also known as

the Dual Listbox Selection interface. In The Java Look and Feel

Guidelines, Advanced Topics, it is called the Add-and-Remove

idiom.

 The Add-and-Remove design pattern (shown in Figure
1) has many variations. One common enhancement is to
provide “Move Up” and “Move Down” buttons to reorder
the chosen list (see Figure 2). Sometimes the chosen list is
displayed as a table to show additional information.
 My previous article (“GUI Design Patterns,” JDJ, Vol. 9,
issue 7) showed how to optimize usability for this common
GUI design pattern. This article shows how to optimize per-
formance for this design pattern and other GUIs that display
long lists.

Java Performance Patterns
 For short lists, neither the JList or the JTable are likely
to give performance problems; Java and Swing have been
optimized many times over the years. If your lists contain
thousands of objects though, there are some standard Java
design patterns that optimize performance.
 The key to all these performance patterns is to realize
that the default list and table implementations are general
purpose. To optimize performance, you want to bypass this
general-purpose code by informing the JList or JTable of your
application’s specific needs.

Fix the Cell Size
 For example, JLists by default assume that the objects they
contain may be of varying sizes. If your application’s objects
are all the same size, you can inform the JList of this fact. It
will then bypass its general-purpose, size-checking code.

 To fix the cell size, invoke either the setFixedHeight() and
setFixedWidth() methods, or the setPrototypeCellValue()
method. In “Advanced JList Programming,” Hans Muller notes
that setFixedHeight() and setFixedWidth() are useful to align a
JList with another component. Otherwise, it’s generally more
convenient to use setPrototypeCellValue().
 For the prototype cell value, use the value that is largest visu-
ally. If the maximum width is known, a prototype value can be
assigned without looping over all the values, thus saving initial-
ization time. Alternatively, if the application uses a monospace
font, a fast loop can be written to check the string lengths of all
values. Otherwise, to allow proportional fonts, anti-aliasing,
and other issues, check the FontMetrics as in the code below.

 double width = 0;

 String prototype = "";

 FontMetrics fm = jList.getFontMetrics(jList.getFont());

 Graphics g = jList.getGraphics();

 for(int i = 0; (i < values.length); i++)

 { String s = values[i].toString();

 if(width < fm.getStringBounds(s, g).getWidth())

 { width = fm.getStringBounds(s, g).getWidth();

 prototype = s;

 }

 }

 jList.setPrototypeCellValue(prototype);

Write a Custom Model
 For many applications, fixing the cell size may provide all
the performance boost you need. If it doesn’t, the next step is
to take advantage of Swing’s flexible architecture.
 Figures 3 and 4 show portions of the JList and JTable
architectures. Both lists and tables allow you to replace their
default models with custom models of your own. The only
requirement is that your custom model implement the List-
Model or TableModel interface.
 The simplest way to do this is to extend AbstractListModel
or AbstractTableModel. These classes provide management
of listeners and events. Technically, to support the ListModel
interface it is necessary to override only two methods in
AbstractListModel:

 public Object getElementAt(int i)

 public int getSize()

Heman Robinson is a

senior developer with

SAS Institute in Cary, NC.

He holds a BS in

mathematics from the

University of North Carolina

and an MS in computer

science from the University

of Southern California.

He has specialized in

GUI design and development

for 15 years and has been a

Java developer since 1996.

hemanrobinson@yahoo.com

by Heman Robinson

I

Java Design Patterns
for Long Lists

Providing fast performance

Feature

45August 2004www.SYS-CON.com/JDJ

 Similarly, to support the TableModel interface it’s necessary
to override only three methods in AbstractTableModel:

 public Object getValueAt(int row, int column)

 public int getRowCount()

 public int getColumnCount()

 These methods support a ListModel or TableModel that is
immutable: its contents can’t be changed. For an application
such as the Add-and-Remove pattern, the contents must be
mutable. This requires extending the AbstractListModel with
methods to add and remove values from the list:

 public void addElement(Object o)

 public void removeRElement(int i)

 Similarly, the AbstractTableModel can be extended with
methods to add and remove rows from the table.

 public void addRow(Object[] row)

 public void removeRow(int i)

 Writing a custom model informs the Swing GUI control
of your application’s specific needs, causing it to bypass its
general-purpose code. For example, both the DefaultListModel
and the DefaultTableModel are Vector based. This means their
accessor methods are synchronized. If your application doesn’t
require synchronization, it can be removed in the custom
model, for example, by using an ArrayList instead of a Vector. A
custom ListModel based on an ArrayList is shown in Listing 1.
 For the Add-and-Remove pattern, a further performance
boost can be obtained by realizing that the total number of ob-
jects never changes. Both Original and Chosen lists have a fixed
maximum size, which is the sum of the number of objects in
each. This means that a custom model does not need expand-
able storage, such as a java.util.Collection, so a more efficient
array can be used instead. A custom TableModel based on an
array is shown in Listing 2.
 Finally, significant performance can be gained by adding
methods to the custom model to process multiple objects.
The custom ListModel of Listing 1 provides three methods to
handle multiple objects:

 public void addAll(Object[] objects)

 public void clear()

 public Object[] toArray()

 In the DefaultListModel, to add 100 objects addElement()
must be invoked 100 times. In the custom model, the addAll()
method can be invoked only once. If an application oper-
ates on multiple objects, performance can almost always be
improved by writing a custom model.

Can More Be Done?
 For most applications, a custom model provides sufficient
performance improvement. However, Swing provides another
option using the same architectural pattern. As shown in Fig-
ures 5 and 6, JList and JTable rely on renderers to display their
contents.
 Just as the custom model replaced the default model, a
custom renderer can replace the default renderer. The only
requirement is that the custom renderer implement the List-
CellRenderer or TableCellRenderer interface.

 The performance boost from a custom renderer is roughly
proportional to the number of objects being rendered. If your ap-
plication displays only a few objects, as in the Add-and-Remove
pattern, this performance boost is not significant. A better use of
a custom renderer is given by Steve Wilson and Jeff Kesselman in
Java Platform Performance: Strategies and Tactics. Their example
displays a sparse table that derives a significant performance
boost because the empty cells don’t need to be rendered at all.
 Some highly specialized applications require more special-
ized performance patterns. Hans Muller notes that internally
JList uses the toString() method to convert objects to strings. If

 Figure 1 Add-and-Remove Pattern

 Figure 2 Add-and-Remove pattern with “Move” buttons and table

 Table 1 JList “Add” Performance, in Milliseconds

 Varied Cell Size, Fixed Cell Size, Fixed Cell Size, Fixed Cell Size,

Objects DefaultListModel DefaultListModel ArrayList Model Array Model

 1,000 11 2 2 2

 2,000 21 2 2 2

 5,000 50 2 2 2

 10,000 104 2 2 2

 20,000 208 2 2 2

 50,000 500 2 2 2

 100,000 1070 3 3 3

 Table 2 JList “Add All” Performance, in Milliseconds

 Varied Cell Size, Fixed Cell Size, Fixed Cell Size, Fixed Cell Size,

Objects DefaultListModel DefaultListModel ArrayList Model Array Model

1,000 7 7 1 1

2,000 15 15 1 1

5,000 35 35 3 2

10,000 76 80 6 2

20,000 157 155 11 5

50,000 380 380 28 11

100,000 770 770 55 22

 Table 3 JTable “Add” Performance, in Milliseconds

Objects DefaultTableModel ArrayList Model Array Model

1,000 2 2 2

2,000 2 2 2

5,000 2 2 2

10,000 2 2 2

20,000 2 2 3

50,000 3 3 3

100,000 3 3 3

 Table 4 JTable “Add All” Performance, in Milliseconds

Objects DefaultTableModel ArrayList Model Array Model

1,000 7 1 1

2,000 15 2 1

5,000 38 3 1

10,000 78 6 2

20,000 160 13 5

50,000 385 35 11

100,000 770 75 22

www.SYS-CON.com/JDJ46 August 2004

the application does not need this generality, the conversion
time can be saved by building a custom model around the
String class rather than the Object class.
 In Christmas Tree Applications Scott Violet and Kathy
Walrath give a fine and detailed example using a custom ren-
derer and other performance patterns. Their code produces
fast performance for frequently updated JTables. Patterns
such as these are not usually needed, but they show the per-
formance improvements that become possible when Swing
is tailored to a specific application.

How Much Improvement Can We Expect?
 Performance benchmarks for the Add-and-Remove pattern
show that fixing the cell size is the most cost-effective perfor-
mance pattern for JLists. Both JLists and JTables can achieve
dramatic improvement from custom models, especially when
processing multiple objects.
 The benchmarks shown in Figures 7 and 8 and Tables 1–4
were run using JDK 1.4.1 under Mac OS X on a G4 CPU at
450MHz. Your mileage will vary, but these conclusions hold for
most applications:
• For a JList, fix the cell size.
• For a long list or table, write a custom model.
• For a specialized application, consider specialized design

patterns such as a custom renderer.

Conclusion
 The Add-and-Remove GUI design pattern enables users to
choose multiple objects from long lists. Appropriate Java de-
sign patterns provide fast performance for this GUI and other
applications.

Resources
• Aube, S. (2000). “A Dual Listbox Selection Manager”:

www.codeguru.com/Cpp/controls/listbox/article.php/
c4755

• Muller, H. (2000). “Advanced JList Programming”: http://
java.sun.com/products/jfc/tsc/tech_topics/jlist_1/jlist.
html

• Sun Microsystems Inc. (2002). Java Look and Feel Design
Guidelines: Advanced Topics. Addison-Wesley Professional:
http://java.sun.com/products/jlf/at/book/Idioms6.html

• Violet, S., and Walrath, K. (2002). “Christmas Tree
Applications”: http://java.sun.com/products/jfc/tsc/arti-
cles/ChristmasTree/

• Weinschenk, S., Jamar, P., and Yeo, S. (1997). GUI Design
Essentials. Wiley & Sons. p. 192, 206–207.

• Wilson, S., and Kesselman, J. (2000). Java Platform
Performance: Strategies and Tactics. Chapter 10: http://java.
sun.com/developer/Books/performance/

Feature

 Figure 3 JList and ListModel

JList ListModel

AbstractListModel

DefaultListModel

 Figure 4 JTable and TableModel

JTable TableModel

AbstractTableModel

DefaultTableModel

 Figure 5 JList and ListCellRenderer

JList ListCellRenderer

DefaultCellRenderer

 Figure 6 JTable and TableCellRenderer

JTable TableCellRenderer

DefaultTableCellRenderer

 Figure 7 JList “Add” Performance

Varied Cell Size

Fixed Cell Size

1200

1000

800

600

400

200

0
0 25000 50000 75000 100000

Objects

M
ill

is
ec

on
ds

 Figure 8 JTable “Add All” Performance

Default Model

Array Model

800

600

400

200

0
0 25000 50000 75000 100000

Objects

M
ill

is
ec

on
ds

ArrayList Model

Listing 1

/** Custom ArrayList model */
private class CustomArrayListModel extends
AbstractListModel
{
 /** @serial List */
 private ArrayList _list;

 /**
 * Returns specified object.
 * <p>
 * @param i index
 * @return object
 */
 public Object getElementAt(int i)
 { return(_list.get(i));
 }

 /**
 * Returns size of list.
 * <p>
 * @return size
 */
 public int getSize()
 { return(_list.size());
 }

 /**
 * Adds the specified element to the end of the list.
 * <p>
 * @param o Object
 */
 public void addElement(Object o)
 { _list.add(o);
 fireIntervalAdded(this,
 _list.size() - 1, _list.size() - 1);
 }

 /**
 * Removes the specified element.
 * <p>
 * @param i index
 */
 public void removeElement(int i)
 { _list.remove(i);
 fireIntervalRemoved(this, i, i);
 }

 /**
 * Adds all of the specified elements.
 * <p>
 * @param objects Array of Objects
 */
 public void addAll(Object[] objects)
 { for(int i = 0; (i < objects.length); i++)
 _list.add(objects[i]);
 fireIntervalAdded(this, _list.size() -
 objects.length, _list.size() - 1);
 }

 /**
 * Removes all objects from the list.
 */
 public void clear()
 { int size = _list.size();
 _list.clear();
 fireIntervalRemoved(this, 0, size - 1);
 }

 /**
 * Returns list as array.
 * <p>
 * @return list
 */
 public Object[] toArray()
 { return(_list.toArray());

47August 2004www.SYS-CON.com/JDJ

 }

 /**
 * Constructor.
 * <p>
 * @param size size of list
 */
 public CustomArrayListModel(int size)
 { _list = new ArrayList(size);
 }
}

Listing 2

/** Custom array model */
private class CustomArrayModel extends AbstractTableModel
{
 /** @serial Data vector */
 private Object[][] _table = new Object[0][];

 /** @serial Column names */
 private Object[] _columnNames = new Object[0];

 /** @serial Number of rows */
 private int _rows = 0;

 /**
 * Returns specified value.
 * <p>
 * @param row row index
 * @param column column index
 * @return value
 */
 public Object getValueAt(int row, int column)
 { return(_table[row][column]);
 }

 /**
 * Returns number of rows.
 * <p>
 * @return number of rows
 */
 public int getRowCount()
 { return(_rows);
 }

 /**
 * Returns number of columns.
 * <p>
 * @return number of columns
 */
 public int getColumnCount()
 { return(_columnNames.length);
 }

 /**
 * Returns row as array.
 * <p>
 * @param i row index
 * @return row
 */
 public Object[] getRow(int i)
 { return(_table[i]);
 }

 /**
 * Returns column names.
 * <p>
 * @return column names
 */
 public Object[] getColumnNames()
 { return(_columnNames);
 }

 /**
 * Assigns data and column names.
 * <p>
 * @param objects data vector
 * @param columnNames column names
 */
 public void setDataVector(
 Object[][] objects, Object[] columnNames)
 { System.arraycopy(objects, 0,
 _table, 0, objects.length);
 _rows = objects.length;
 _columnNames = columnNames;
 fireTableRowsInserted(0, _rows - 1);
 }

 /**
 * Adds the specified row to the end of the table.
 * <p>
 * @param row row
 */
 public void addRow(Object[] row)
 { _table[_rows] = row;
 _rows++;
 fireTableRowsInserted(_rows - 1, _rows - 1);
 }

 /**
 * Removes the specified row.
 * <p>
 * @param i index
 */
 public void removeRow(int i)
 { System.arraycopy(_table, i + 1,
 _table, i, _rows - i - 1);
 _rows--;
 fireTableRowsDeleted(i, i);

 }

 /**
 * Adds all of the specified rows.
 * <p>
 * @param objects Array of rows
 */
 public void addAll(Object[][] objects)
 { System.arraycopy(objects, 0,
 _table, _rows, objects.length);
 _rows += objects.length;
 fireTableRowsInserted(
 _rows - objects.length, _rows - 1);
 }

 /**
 * Removes all rows.
 */
 public void clear()
 { int rows = _rows;
 _rows = 0;
 fireTableRowsDeleted(0, rows - 1);
 }

 /**
 * Returns table as array.
 * <p>
 * @return size
 */
 public Object[][] toArray()
 { Object[][] objects = new Object[_rows][];
 System.arraycopy(_table, 0, objects, 0, _rows);
 return(objects);
 }

 /**
 * Constructor.
 * <p>
 * @param rows maximum number of rows
 * @param objects data vector
 * @param columnNames column names
 */
 public CustomArrayModel(int rows,
 Object[][] objects, Object[] columnNames)
 { _table = new Object[rows][];
 System.arraycopy(objects, 0,
 _table, 0, objects.length);
 _rows = objects.length;
 _columnNames = columnNames;
 }
}

Google, the world leader in large-scale information retrieval, is
looking for experienced software engineers with superb design
and implementation skills and considerable depth and breadth in
the areas of high-performance distributed systems, operating
systems, data mining, information retrieval, machine learning,
and/or related areas. If you have a proven track record based on
cutting-edge research and/or large-scale systems development
in these areas, we have plenty of challenging projects for you in
Mountain View, Santa Monica and New York.

Are you excited about the idea of writing software to process a
significant fraction of the world's information in order to make it
easily accessible to a significant fraction of the world's population,
using one of the world's largest Linux clusters? If so, see
http://www.google.com/cacm. EOE.

www.SYS-CON.com/JDJ48 August 2004

n the early days of Java, GUI
forms were written, not drawn.
They were created by writing code
that instantiated components

and added them to containers with
various layout constraints. Then the
program was run and the result could
be admired. This way of working,
WYGIWYG (what you get is what you
get) was often quite fun, more often
frustrating, and never very produc-
tive. Today we have a JavaBeans speci-
fication and integrated development
environments (IDEs) with GUI paint-
ers. Some of these are doing really
good jobs, considering the difficulties
with layout managers and
platform portability.
 With most components,
such as text fields and
buttons, the principle of
dropping them on the form,
setting properties, and
adding event listeners is
quite sufficient. The JTable
though is more problematic.
It’s just too complex to con-
figure with simple property
editors and also so common
that you don’t want to have to write a
lot of code every time you use it.
 You can drop a table in a JScroll-
Pane and set a lot of properties on the
JTable, but when it comes to adding
and customizing columns, the GUI
painter can’t help you since the col-
umns are not JavaBeans. One solution
is for the GUI painter to provide an
editor for the table model property,
thereby letting you define columns
and set a few attributes on them.
However, I have never seen an editor
that will allow you to customize the
columns of the table with the same
flexibility you have when you custom-
ize text fields on a form.

 There is, however, a completely
different way to go, which is the
one I chose for the table component
in our own class library DOI, called
the DoiTable.

Design Time Behavior
 The DoiTable doesn’t have a
table model property editor at all.
In fact, when you drop it on the
form it doesn’t even look like a
table. Instead, it behaves like a
container during design time,
and you fill it with columns by
dropping DoiTableColumn compo-
nents inside it. At runtime, though,

it automatically converts itself to
a JTable with all the column prop-
erties taken from the design time
column components.
 Figure 1 shows the design time
look of a simple table with four col-
umns. The screenshot is taken from
the NetBeans form editor. When the
designer drops a table on the form,
it appears as a big rectangle. The de-
signer can then give the table a label
and activate tools for inserting and
deleting rows by setting properties on
the table. Note the “Table” label and
small tool bar above the rectangle.
The rectangle is the drop area for
columns. During design time this

area is an ordinary panel with a flow
layout in which column components
can be dropped and reordered. The
columns must be instances of the
DoiTableColumn class. If you ac-
cidentally drop some other type of
component inside it, the drop area
turns red.
 A DoiTableColumn is a direct
descendant of the DoiTextField class,
which is the standard text field in the
DOI library, overridden to change
the design time appearance and
add some properties and behavior
that is specific to a table column. As
you can see, I’ve tried to make the

column components look a
bit like the columns they will
become at runtime. From the
GUI painter’s point of view,
the table is just a container.
Therefore, the painter will
allow you to set properties on
each individual column as if
they were ordinary fields on a
panel, which is exactly what
they are, until you run the
application. In Figure 1, one
of the columns is selected so

you can see the property sheet for it
in the lower right pane. Note also that
the column components retain their
preferred size even if the table is too
narrow to show them all on one line.
The fourth column, “Logical”, doesn’t
fit, so it’s placed on a new row. This
behavior is consistent with any other
flow layout panel. Although I could
have made them resize themselves to
mimic the behavior of a JTable more
closely, I decided against it to make
the columns easier for the designer to
work with.
 This is basically how the table com-
ponent presents itself to the designer.
To the user, however, it looks just like

DOI

by Gunnar Grim

A GUI Painter Friendly
Table Component

I

Gunnar Grim is a

programmer, designer,

and architect for the

consulting firm Know IT

(www.knowit.se). He has

been in the business for

20 years, programming

in everything from Z80

assembly code to SQL

Windows. Since early 1996

he has worked almost

exclusively with Java, mostly

on the server side but also

quite a lot with Swing.

gunnar.grim@knowit.se

The principle of the column container

49August 2004www.SYS-CON.com/JDJ

a JTable in a JScrollPane, as shown in
Figure 2. I’ll shortly go into the details
on how this conversion happens, but
first a little bit about how the table
component communicates with the
GUI painter.

Adjusting the BeanInfo
 Every JavaBean component that
you can draw on a form must have a
supporting BeanInfo object, which is
an instance of a class that implements
the java.beans.BeanInfo interface. The
BeanInfo object is used by the GUI
painter to determine which properties
and events the bean has. Although it
can be created automatically using
introspection, it’s usually written by
the author of the bean. Writing such a
class is outside the scope of this arti-
cle, but there is one important feature
that is often forgotten when BeanInfo
classes are described: the “container
delegate” property. At the time of
writing it isn’t even mentioned in the
Java Tutorial. Without this property, all
beans must fall into the following two
categories:
1. Component beans such as JTextField

or JButton – you drop them in con-
tainers but you don’t drop anything
inside them.

2. Simple container beans such as
JPanel – they are initially empty and
you can drop components inside
them.

 The GUI painter can tell them apart
by treating empty containers as cate-
gory 2 and all other beans as category
1. The DoiTable, however, falls into a
third category. It isn’t just a container,
but a container that initially has a la-
bel, a tool bar, and an inner container
for the columns. Without a special
“trick” in the BeanInfo class, the GUI
painter would think that the DoiTable
is an ordinary component because
it isn’t empty and won’t let you drop
anything inside it. This is certainly
not the behavior we want, so we must
inform the GUI painter that it is a
container and that it has a special
place for dropping stuff. The following
code excerpt from the DoiTableBean-
Info class shows how this is done:

 public BeanDescriptor getBeanDescriptor()

 {

 BeanDescriptor bd =

 new BeanDescriptor(itsBeanClass);

 bd.setName(“DoiTable”);

 bd.setValue(“isContainer”,

 Boolean.TRUE);

 bd.setValue(“containerDelegate”,

 “getColumnContainer”);

 return bd;

 }

 The method creates a BeanDescrip-
tor, which is an object that contains
basic properties about the bean.
While some of these properties have
dedicated methods such as setName,
others are set using the generic set-
Value method. In the code above, the
property isContainer is set to TRUE to
tell the GUI painter that although this
bean isn’t empty, it is still a container.
We also have to tell the GUI painter
which method on our bean returns
the inner container by setting the
property containerDelegate to the
name of the method. In the DoiTable
case, the method is called getColumn-
Container.

Converting to Runtime Behavior
 When the application is run we
obviously don’t want the table
to look like it does in the GUI
painter. Instead we want the
drop area, a.k.a. the column
container, to convert itself to
a real JTable. This conver-
sion happens in the method
addNotify, which is called auto-
matically on every component
when it is added to a display-
able container. This method
may be called several times,
so we must make sure the
table doesn’t attempt to con-
vert itself more than once.
Also, we don’t want it to con-
vert itself at all when we are
using the table in the GUI
painter. To test for design
time or runtime mode, there
is a method in the java.beans.
Beans class called isDesign-
Time. This method returns
true when called from a com-
ponent in a GUI painter, and
false otherwise.
 The first thing we need to
do is implement the addNotify
method:

 public void addNotify()

 {

 super.addNotify();

 commitColumnContainer();

 }

 The first thing the method does
is invoke the same method on
the superclass to let it do whatever
it needs to do, then it calls the
method commitColumnContainer
to do the real work. This method
looks like:

 public void commitColumnContainer()

 {

 commitColumnContainer(false);

 }

 As you can see, it doesn’t do much;
it just delegates to another method.
The reason for this is that the other
method has a parameter that allows
the caller to force a conversion even if
we are in design time. This is useful in
certain circumstances, which I’ll get
back to later. For now we’ll look at the
first few lines of the “real“ commit-
ColumnContainer method:

 public void commitColumnContainer(

 boolean pForce)

 {

 if (!pForce && Beans.isDesignTime())

 return;

 if (itsColumnContainer == null)

 return;

Full contest details at: www.simagine.axalto.com or call 1 888 343 5773
© Axalto 2004

In association with:

WHO’S
DEVELOPING
THE COOLEST
WIRELESS
APPLICATIONS?

YOU ARE!

ENTER TO WIN THE 2005 SIMAGINE
DEVELOPERS’ CONTEST!
Over $70,000 will be awarded
for innovative SIM card services
including a special Cingular award for
best submission from North America

Deadline is October 10, 2004!

www.SYS-CON.com/JDJ50 August 2004

 The method starts by checking if
a conversion should happen at all by
testing the force parameter and calling
the isDesignTime method. If these tests
are passed, it goes on to check if the
table has already been converted. The
column container panel is created and
added to the table by the constructor
and removed when the conversion is
completed. This means that if it is null,
the table is already converted and the
method returns immediately. Now the
real conversion can be done. We start off
by transferring all column beans from
the column container into an internal
array:

 int ccc =

 itsColumnContainer.getComponentCount();

 itsColumns = new DoiTableColumn[ccc];

 for (int i = 0; i < ccc; ++i) {

 DoiTableColumn column =

 (DoiTableColumn)itsColumnContainer

 .getComponent(i)

 itsColumns[i] = column;

 column.setTable(this);

 }

 Each column is given a reference
back to the table using the setTable
method of the DoiTableColumn class.
This reference is used by the column
to access various properties on the
table that affect its behavior. Now it’s
time to get rid of the column container
and replace it with a scroll pane:

 remove(itsColumnContainer);

 itsColumnContainer = null;

 itsScrollPane = new JScrollPane();

 add(itsScrollPane, BorderLayout.CENTER);

 The scroll pane will eventually con-
tain a JTable, but before we can create
it we need a column model, the object
used by Swing’s JTable to represent its
columns. A JTable can automatically
create the column model based on its
table model, but we don’t want that
because the DoiTableColumn objects
contain much more information about
the columns than is contained in an
ordinary table model, e.g., preferred
width in characters, resizability, label
text. etc.
 The below code creates a column
model that contains column objects of
Swing’s TableColumn class, with rel-
evant properties copied from the cor-
responding DoiTableColumn objects:

 TableColumnModel colmod =

 new DefaultTableColumnModel();

 for (int i = 0; i < ccc; ++i) {

 // Get the column bean. Skip if hidden.

 DoiTableColumn column = itsColumns[i];

 if (column.isHidden())

 continue;

 // Create a Swing column.

 TableColumn swingColumn =

 new TableColumn();

 // Copy properties.

 swingColumn.setHeaderValue(

 column.getLabelText();

 swingColumn.setResizable(

 column.isResizable();

 // Add to column model.

 colmod.addColumn(swingColumn);

 }

 There is still one little detail before
we can create the JTable. We need
a table model. A JTable can’t exist
without a table model so we need to
create one that is initially empty. This is
accomplished with the following code:

 TableModel tm =

 new DefaultTableModel(0, ccc);

 Now the JTable can be created and
added to the scroll pane that has
replaced the column container. We
also tell it not to automatically create a
new column model if the table model
is replaced later:

 JTable jt = new JTable(tm, colmod);

 jt.setAutoCreateColumnsFromModel(false);

 itsScrollPane.add(jt);

DOI

 Figure 2 Runtime

 Figure 1 Design Time

51August 2004www.SYS-CON.com/JDJ

 That’s it. The DoiTable bean now
contains a JTable within a JScrollPane
instead of a column container panel.
The DoiTableColumn beans still ex-
ist though, and there is an implicit
association between each column
bean with the corresponding Swing
TableColumn object in the column
model. This association will prove
very useful for later enhancements,
some of which I’ll hint at in the next
section.
 I promised to mention the pur-
pose of the pForce parameter. This
parameter can be used by subclasses
of the DoiTable that create and add all
columns. Let’s say you want to create a
bean called PhoneNumberTable, with
a number type column and a phone
number column. This bean would
add its columns in the constructor
and then call commitColumnCon-
tainer(true) to force the conversion to
a JTable. In this case, the force param-
eter is necessary since the conversion
must happen in design time as well as
runtime.

Enhancements
 The purpose of this article is to
show you the principle of the column
container, not how to write a full-
fledged table component. To do that,
I’d probably have to fill 10 issues of
JDJ. For this reason the code examples
shown of what really happens inside
the DoiTable have been simplified.
Still, I’d like to round off with a brief
list of some interesting features in the
real DOI classes.

Runtime Propagation of Properties
 Many of the DoiTableColumn prop-
erties are automatically propagated to
the JTable when changed at runtime.
This allows runtime code to dy-
namically change the table by simply
setting properties on the DoiTable-
Column bean, which is much easier
than doing it through the JTable. For
example, the column header is up-
dated if the label text of the column is
set. This propagation is accomplished
through the implicit association be-
tween the invisible column bean and
the visible table column.

Runtime Synchronization of Cell Values
 The DoiTable has a property called
ContextRowNo that can be

set programmatically. It is also
updated automatically when the
user selects a row. I mentioned
earlier that the DoiTableColumn
class is a subclass of a class called
DoiTextField, which is an enhance-
ment of JTextField. This means that
a DoiTableColumn bean can have a
value. The context row is used to syn-
chronize the value of a column bean
and the corresponding cell value.
The designer can add a listener on
a column bean that’s triggered
when the user edits the cell. The
event handler can then access
the cell value through the column
bean and set a value on another cell
on the same row, also through a col-
umn bean. The code for this is easier
to write and maintain than using a
table model listener.

Design Time Rendering
 As you can see in Figure 1, the
text fields in the column beans
are not empty. Instead they
contain a text value that reflects
a few important properties (a feature
inherited from the base class
DoiTextField): a mandatory
column has an exclamation
mark suffix, a numeric column
is displayed with “#”, “##” or
“#.#” (depending on if it is an
Integer, Long, or Double), an
uppercase string column uses
“ABC”, etc.

Smart Design Time Checking
 In some circumstances,
checking for design-time
mode is not sufficient. Some
IDEs, for example, NetBeans,
have a preview function
that creates a window with
the form inside it where the
designer can try it out. The
isDesignTime method still
returns true, however, which
causes DoiTable to think that
it’s still in design mode, and
it doesn’t convert itself. To get
around this, it has its own is-
DesignTime method that first
calls the standard method. If
it returns false we are in “real”
runtime, and no further check-
ing is necessary; if it returns
false an extra check for the
special preview mode is neces-

sary. This check is IDE dependent,
and in the NetBeans case it is done
by searching the parent container
hierarchy for the innermost frame
that has a title starting with “Testing
Form[”. Other IDEs will
most likely need variations of this
technique.

Conclusion
 I hope I’ve provided you with some
ideas that you can use when you write
your own beans. The same principle
can naturally be applied to very dif-
ferent kinds of widgets, especially
complex ones that are easier to design
with if they are broken up into parts.
The time spent on doing this is earned
many times over when the end-user
GUIs are designed.

Resources
• The Java Tutorial, trail JavaBeans:

http://java.sun.com/docs/books/
tutorial/javabeans/index.html

• NetBeans FAQ – GUI Editing: www.
netbeans.org/kb/faqs/gui_editing.
html

www.SYS-CON.com/JDJ52 August 2004

Feature

f you’ve ever written software to
be used by business managers,
you will no doubt have received
requests for interoperability with

the Microsoft Office Applications. “Get
me the report in Excel; HTML doesn’t
cut it and I need to run my own analysis
on it”; “Can you index the zillion word
documents I have so that the whole
organization can search on them?”;
“I have all this data in Excel; do I have
to enter it again on this Web page?”….
These are things we commonly hear
as application developers, which is not
surprising given the ubiquity of MS
Office.
 Does this mean you’re forced to
tie your application to Windows to
interface with the COM APIs of Excel
or Word? Apart from the fact that you
don’t want your language or platform
decision to be constrained by a lack of
choice, it’s also important to note that
these APIs can be unstable because
they’re automating a desktop applica-
tion. Because of this, they are unreliable
for any server-side deployment. For the
Java developer, however, the power of
Jakarta POI is close at hand.
 POI is a pure Java application library
for reading and writing the Microsoft
OLE2 Compound Document Format
(OLE2CDF) file formats. This format is
used by (among others) various MS Of-
fice applications. As the name suggests,
this is a format for storing multiple
documents (or streams) in one file, for
example, storing an embedded spread-
sheet along with a presentation. Within
this structure are stored the records that
contain the application-specific data.
 POI is structured along these lines. At
its base it has a component known as
the POIFS or the POI File System, which
is the most complete implementation of
the OLE2CDF structure in Java. Layered
above this are the components to read

the Excel record structures (HSSF) or the
Word record structures (HWPF).

HSSF
 HSSF is the component of POI that
allows you to read, write, and manipu-
late Excel spreadsheets from pure Java
applications. It consists of code that
understands the Excel record formats,
and wraps them up in an easy-to-use
API.
 How easy does HSSF make reading
Excel files? See for yourself!

 InputStream in = new

FileInputStream("data.xls"));

 HSSFWorkbook wb = new

HSSFWorkbook(in);

 HSSFSheet sheet = wb.getSheetAt(0);

// the 1st sheet

 HSSFRow row = sheet.getRow(1);

// get the 2rd row

 HSSFCell cell = row.getCell((short)1);

// the 2nd cell of the 2nd row

 The model of an Excel document in
HSSF begins with the HSSFWorkbook
object. This object provides access
to the sheets (by name or number),
which in turn provides access to the
rows (HSSFRow) in the sheet. Each row
provides access to the individual cells
(HSSFCell) it contains.
 From the cell object you can retrieve
data contained in that cell via acces-
sor methods, depending on the type of
data. Listing 1 provides an example.
 Given this object model, writing is
equally simple. Instead of “get”-ing rows
and columns, you “create” them and
then “set” the values in the cells as in
Listing 2.
 Once again, start with the HSSFWork-
book class, whose default constructor
provides a new workbook object; then
populate the workbook by creating a
sheet in which you create rows. In each

row create the cells you need. Finally,
populate the cells with the data. As List-
ing 2 shows, a cell can contain integers,
floats, strings, and dates.

Styles
 All that is fine, but plain data is usu-
ally not sufficient to keep your users
happy. HSSF therefore has a whole
range of features designed to let you use
a variety of styles and formats that Excel
supports.
 To start applying styles to cells, first
create an instance of an HSSFStyle class:

 HSSFStyle myStyle = wb.createCellStyle()

// wb is an HSSFWorkbook object

 The style object will now provide
you with methods to set various style
parameters, such as foreground and
background colors, fonts, borders, and
data formats, via conventionally named
setters.

Data Formats
 A key component of a cell’s style is its
data format. This specifies, for example,
the number of decimal places in a
number, or the format of a date. The
data format is set using the setDataFor-
mat method of HSSFStyle. This method
takes an integer, which is an index to
a format, since Excel keeps a list of
indexed built-in formats (and user-de-
fined formats are appended to this list
and indexed in a similar fashion).
 It’s easy to get the index, however.
For a built-in format, use the static
getBuiltinFormat method in the HSSF-
DataFormat class. Give it the format
string and it will return the correct
index, the proper index for you. To set
a format:

 myStyle.setDataFormat(HSSFDataFormat.

getBuiltinFormat(“d-mmm-yy”);

POI

by Ryan Ackley and
Avik Sengupta

Unlocking Microsoft
Office Documents

I

Avik Sengupta is a

domain committer

on the Jakarta POI

 project, and is chief

technology officer at

Itellix Software

Solutions.

avik@apache.org

An open source alternative

Ryan Ackley

has been an active

contributor to the POI

project for several years.

sackley@cfl.rr.com

53August 2004www.SYS-CON.com/JDJ

 For a user-defined format, first get
an instance of HSSFDataFormat from
an HSSFWorkbook object to ensure
that your format is registered with the
workbook:

 HSSFDataFormat df =

wb.createDataFormat();

 myStyle.setDataFormat(df.getFormat(“dd%M

MM%yyyy”));

 If you don’t want to worry about
which formats are user defined (it’s
documented in the Javadocs for HSSF-
DataFormat), simply use the nonstatic
method and it will take care of this issue
internally.
 When you have defined the style you
want, just set it to the cell:

 cell.setCellStyle(myStyle);

 Reuse the same style object for cells
that are similarly formatted – do not
create new style objects for each cell,
since Excel has an upper limit on the
number of styles that can be referenced
in a workbook. For example, you could
create one style object for the table
headers, one for the body, and one for
the footer and use them throughout
your spreadsheet.

Formulas
 Probably one of the most important
features of HSSF is the ability to popu-
late cells with formulas. This allows you
to create dynamic spreadsheets and
facilitate the user’s ability to change
the data and perform her own analysis
(which is indeed the power of spread-
sheets, and the number one reason why
you would want to output Excel files).
 Formulas are created using the set-
CellFormula method of an HSSFCell ob-
ject. The input to this method is a string
containing the formula you want at that
cell. It should be in the same format that
you would type into the edit box in Excel
(without a leading “=”), thus:

 cell.setCellFormula(“A1+A2^2”);

 You could use any built-in VBA func-
tion, or even a user-defined function, in
the formulas:

 Cell.setCellFormula(“average(A1:B1)”);

 cell.setCellFormula(“mySpecialFunction(A

1/A2)”);

 If you need to provide your users with
the ability to copy-paste or drag an Excel

formula in the resultant sheet correctly,
you might want to use absolute refer-
ences instead of relative. If formulas with
relative cell references (the default, e.g.,
A1) are copied from one cell and pasted to
another, the cell references in the formu-
las change relative to the destination cell.

 cell.setCellFormula(“A1/A25”);

 However, if the formula contains refer-
ences that are absolute, they stay the
same irrespective of the destination cell.
Absolute references are specified by add-
ing a $ symbol to the reference, viz. A1.
Note that the row and the column can be
individually addressed while specifying
absolute references, viz. A$1 vs $A1.
 You can also reference other sheets
in the same workbook in the formula.
HSSF does not yet support the ability
to write formulas referencing external
workbook files.

 Cell.setCellFormula(“SUM(Sheet1!A1-

Sheet1!A2)”); // formula in cell A1 of

Sheet2.

 Note, however, that the formula results
are not calculated by HSSF, which is
really a file format reader and writer, not
a functional replacement for a spread-
sheet application. The formula is merely
written into the file in the proper format
and evaluated when the file is opened in
Excel.

Finally
 Among other advanced features, HSSF
allows you to create merged cell regions.
You can also set headers and footers for
sheets, as well as set print areas, to ensure
the data prints well. You can create split
and freeze panes, set zoom options, or
enable sheet protection. Additionally,
you can create and manipulate named
ranges. Later versions (see sidebar – A
Guide to POI Versions) also let you pro-
grammatically create drawings in sheets.
 However, there are always features
of an Excel file that POI does not yet
support. In such scenarios, templates
are invaluable. The idea is to create an
empty Excel spreadsheet populated
with the attributes that POI doesn’t
support. You could, for example, create
a chart in the spreadsheet referencing
named ranges, or create a pivot table in
a certain area. At runtime, in Java code,
you could read the workbook in with
POI and fill in the cells with data from
your application. Now when the user
opens the workbook in Excel, it comes

loaded with data, charts, and pivot
tables. Listing 3 provides an example.
 Hopefully this overview of HSSF has
convinced you that HSSF has almost all
it takes to create professionally produced
Excel spreadsheets that’ll be a joy to your
users, and leave them asking for more.

Word Documents with HWPF
 The HWPF (Horrible Word Process-
ing Format) component of POI is a Java
library for reading and writing Word
documents. It’s still in early beta but is
relatively stable and it is the only open
source Java solution we know of for
programmatically accessing and/or
creating a Word document.
 I am going to give a short introduc-
tion to the high-level structure of a Word
document. These are basic concepts
that can be applied to most styled docu-
ment formats and they will make later
sections of this article easier to digest.
 A Word document can be modeled as
a tree-like structure. Figure 1 illustrates
this. The document has sections, a sec-
tion has paragraphs, and a paragraph
has character runs. Each instance of
these is associated with a range of text.
• A section can be correlated with a

chapter in a book. A section contains
obscure properties like the page bor-
der and the number of columns.

 As an open source project, POI’s development is carried out in a public re-
pository by a group of volunteers. As a result, the code is quite dynamic, and
this guide will help you navigate the multiple versions you’ll find in the wild.
In general, note that releases with beta, dev, or RC attached to their names
are flagged as development releases, while releases without these postfixes
are flagged as production releases.
 The 1.5.1 version released early 2002 was the preferred production version
for a long time. But after a long series of new features, followed by a longer
period of bugfixes and stabilization, the 2.0 version was released in January
2004.
 Subsequently, the 2.5 version was released in late February 2004 to
incorporate a major new piece of functionality – the ability to create drawings
in Excel sheets via what is known as the Escher Layer.
 Meanwhile, development had been ongoing in an experimental branch to
enable the reading and writing of Word documents (HWPF). Unfortunately,
it’s necessary to download this piece of POI directly from CVS and compile it
yourself. There are many excellent and free client applications for accessing
CVS repositories such as WinCVS and jCVS.

A Guide to POI Versions

 Getting started with POI couldn’t be easier. Download the version you
want from www.apache.org/dyn/closer.cgi/jakarta/poi/ as a zip or tar.gz
archive. From the archive extract poi-<version>-<date>.jar. Add this file to your
classpath and you should be set. POI has an optional dependency on log4j,
but that’s needed only if you turn on logging (which is disabled by default).

Getting Started

www.SYS-CON.com/JDJ54 August 2004

• A paragraph follows the traditional
definition of a paragraph. It contains
more familiar properties that most
Microsoft Word users know. The jus-
tification (left, center, right) and the
indent setting are good examples.

• A character run is a consecutive run
of characters that share the same
formatting. These contain the most
common and visible properties.
Some examples are font family, font
size, bold, italic, and underline.

 This provides you with enough
information to use Java to read and
manipulate this model. To get started,
we have to create an HWPFDocument
object from a physical Word file.

1 FileInputStream in =

2 new FileInputStream(“C:\\test.doc”);

3 HWPFDocument doc =

4 new HWPFDocument(in);

 The Section, Paragraph, and Charac-
terRun classes represent the document
tree that I explained earlier. I walk that
tree in Listing 4.
 First, I get the Range object for the
entire document. This is the entry point
to the object model. The Range class is
an important piece of the HWPF API. It
represents an arbitrary range of text in
the document, with one to many sec-
tions, paragraphs, and character runs.
The Section, Paragraph, and Character-
Run classes extend the Range class.
 The methods numSections(), num-

Paragraphs(), and numCharacterRuns()
and the correlating getters are actu-
ally implemented in the Range class.
Of course, if you call numSections() on
a Paragraph object, it will return one.
That would be the parent Section of that
Paragraph object.
 Another important method in the
Range class is text(). This can be used to
get the plain text for a particular range.
To get the text for a document, use the
following code:

String plainText =

 doc.getRange().text();

 Once we have an instance of a Sec-
tion, Paragraph, or CharacterRun object,
we can read its properties by calling its
various getters.

//Check the number of columns

//for this section

Section sect = r.getSection(x);

sect.getNumColumns();

//See if a paragraph is set to

//have a page break before it.

Paragraph par = sect.getParagraph(y);

boolean breakBefore = par.pageBreakBefore()

//Get the font name of a

//character run

CharacterRun run =

 par.getCharacterRun(z);

String font = run.getFontName();

 These are quick examples. There
are dozens of settings and there isn’t
enough space to cover them all. I en-
courage you to read the Javadoc to see
what is possible.

Tables
 Behind the scenes, tables are just a
group of paragraphs with certain flags set.
HWPF attempts to hide the juicy details
but it still needs a little help (see Listing 5).
 Listing 5 touches every paragraph in
the document, looking for one with the
table flag set. When it finds one, it passes
it to the getTable method on line 8. Notice
on line 12 that it’s necessary to increment
x so that the paragraphs that were part of
the table aren’t processed again.
 Tables have TableRows, which in turn
have TableCells. All these classes extend
Range so you can use all the methods
that I’ve already talked about for getting
the contents of these entities.

Lists
 Unlike tables, lists don’t have a begin-
ning and an end, because entries in
a list can be inserted anywhere in the
document and the list numbering can
pick up wherever it left off. The ListEntry
class is used to represent an entry, and it
extends the Paragraph class. Look at how
I get a list entry in the following example:

1 for (int x = 0; x < numPars; x++)

2 {

3 Paragraph par =

4 range.getParagraph(x);

5

6 if (par instanceof ListEntry))

7 {

8 ListEntry entry = (ListEntry)par;

9

10 //do something with the entry…

11 }

12 }

Adding New Content
 There may be a time when you want
to generate new Word documents or
modify an existing document using
Java. My first word of advice is to make
sure that this is absolutely necessary. In
most cases, a nonproprietary file format
such as PDF, RTF, or HTML is the better
choice. There are free libraries available
for all of these. In the cases of RTF and
HTML, the standard JDK provides the
javax.swing.text package to manipulate
the file formats. A rule of thumb for
creating Word documents is: Will the
eventual recipients of these documents
want to edit them? If not, the PDF or
HTML format is a better choice. If they
do wish to edit them, consider using
RTF instead of the Word file format.
 The writing functionality of HWPF is
somewhat experimental so expect some
bugs and limited features. Modifying
an existing document or creating a new
Word document from scratch starts
the same way – simply create a new
HWPFDocument as shown in an earlier
example. The only difference is that if
you want to create one from scratch,
you start with a blank document. The
POI distribution comes with one called
“blank.doc.”
 To commit any changes to a physical
file and see what they do, you must
write out the modified document. The
following code writes out a Word docu-
ment that contains any changes made
to the original object model.

POI

 Figure 1 Word doc modeled as a tree-like structure

 Figure 2 Word document

55August 2004

FileOutputStream docOut =

 new FileOutputStream(

 “C:\\testout.doc”);

doc.write(docOut);

 To be safe, I wouldn’t recommend
overwriting the original document.
HWPF attempts to keep things that it
doesn’t directly support in the file, but
this doesn’t guarantee that they will be
there when it writes the file out again.
 The Section, Paragraph, and Char-
acterRun classes define setters that
allow the various properties of existing
content to be changed. The Range class
defines the following methods for add-
ing text and paragraphs to a document.
• insertBefore(String text): Inserts

a string into the document at the
beginning of the Range. Assumes the
properties of the character run at the
beginning of this range.

• insertAfter(String text): Inserts a string
into the document at the end of the
Range. Assumes the properties of the
character run at the end of this range.

• insertBefore(String text, Character-
Properties props): Inserts a string into
the beginning of the Range with the
properties given by props.

• insertAfter(String text, Character-
Properties props): Inserts a string into
the end of the Range with the proper-
ties given by props.

• InsertBefore (ParagraphProperties
props, int styleIndex): Inserts a new
empty paragraph at the beginning of
this Range. Based on the style at index
styleIndex in the stylesheet.

• InsertAfter (ParagraphProperties
props, int styleIndex): Inserts a new
empty paragraph at the beginning of
this Range. Based on the style at index
styleIndex in the stylesheet.

 All of the insert methods return the
Range that the insertion is now a part of.
For example, when inserting a para-
graph using insertAfter(ParagraphPrope
rties props, int styleIndex), a Paragraph
object is returned. Since Paragraph
extends Range, all of the above methods
can be used to fill this paragraph with
text. The ParagraphProperties and
CharacterProperties are similar to the
Paragraph and CharacterRun classes.
The difference is that classes ending
with “Properties” are not associated with
a location in a document. There are also
SectionProperties and TableProperties.
 The methods that insert a paragraph
require a style index. Paragraphs and
character runs store their settings as del-

tas from a style stored in the stylesheet.
Styles provide a convenient way to main-
tain a consistent look and feel in a docu-
ment. They also help a person creating a
Word document through a user interface
to be more efficient. To a programmer
this may not matter. No matter what the
style is, whatever properties are set for
a particular Paragraph or CharacterRun
object will appear in the document. I
recommend just using the number 0 for
a style index. This will always refer to the
“Normal” style in the stylesheet.

Editing Tables
 Because of the complexity, the range
class does not currently define meth-
ods for inserting tables. However, the
TableCell class extends Range, so all of
the insert methods defined in Range can
be used to add content to the individual
table cells of an existing Table.

Adding Lists
 Adding a list is a little tricky. Unlike
most objects in the document, a list is
not associated with a range of text. There
are paragraphs that are associated with
a list and these paragraphs are actual
entries in a list. Before an entry can be
added to a document, a list must be cre-
ated. The following code creates a list.

1 HWPFList list = new HWPFList(true,

2 doc.getStyleSheet());

3

4 int listID = doc.registerList(list);

 The HWPFList constructor takes two
arguments. The first one is a boolean
determining whether the list should be
bulleted (if the argument is false, the
list will be numbered), and the second is
the stylesheet of the document to which
the list will belong. The register
List method that I call on the method on
line 4 is defined in HWPFDocument. It
returns a unique ID that’s needed when
adding a list entry to the document.
 The Range class defines more insert
methods for adding list entries.
• insertBefore(ParagraphProperties

props, int listID, int level, int style-
Index)

• insertAfter(ParagraphProperties props,
int listID, int level, int styleIndex)

 What is different from the normal
paragraph insert is that both of the
above methods require the list ID and
the level. The level argument refers to
the indent level of the list. At this point,
the level argument is ignored because

HWPF only supports writing simple,
one-level lists. Figure 2 shows a screen-
shot of the Word document created using
the code in Listing 6.

Summary
 POI has its weaknesses. The biggest by
far is the memory consumption in the Ex-
cel component (HSSF). The POI team has
recognized this problem and is trying to
address it in a coming release. The Word
component’s (HWPF’s) biggest problem is
that it isn’t very mature. Right now it only
provides very limited functionality. Even
the Excel side of POI could use improve-
ment on its support of some key Excel
features, such as charting and images
 If POI doesn’t cut it, there is a wide
selection of commercial libraries for
working with Excel, such as SoftArti-
sans OfficeWriter. SoftArtisans (www.
softartisans.com) is the only vendor I
could find that also offers a product that
can create Word documents in pure Java.
OfficeWriter also supports every feature
of Word and Excel.
 With the new agreement between
Sun and Microsoft, we may one day see
the opening of the Microsoft file formats.
While you wait for this day to come, POI
provides a free open source alternative.

References
• Apache POI: http://jakarta.apache.

org/poi
• WinCVS: www.wincvs.org
• SoftArtisans OfficeWriter: http://

officewriter.softartisans.com/office
writer-240.aspx

Listing 1
String value;
 switch (cell.getCellType())
 {
 case HSSFCell.CELL_TYPE_FORMULA :
 value = "FORMULA "+ cell.getCell-
Formula();
 break;

 case HSSFCell.CELL_TYPE_NUMERIC :
 value = "NUMERIC value="
 + String.valueOf(cell.
getNumericCellValue());
 break;

 case HSSFCell.CELL_TYPE_BOOLEAN :
 value = "Boolean value="
 + String.valueOf(cell.
getBooleanCellValue());
 break;

 case HSSFCell.CELL_TYPE_STRING :
 value = "STRING value="
 + cell.getStringCell-
Value();
 break;

 case HSSFCell.CELL_TYPE_DATE :
 value = "DATE value="
 + cell.getDateCellVal-
ue().toString();
 break;

 default :
 }

www.SYS-CON.com/JDJ

www.SYS-CON.com/JDJ56 August 2004

Listing 2
 HSSFWorkbook wb = new HSSFWorkbook();
 HSSFSheet sheet = wb.createSheet();
 HSSFRow row = sheet.createRow((short)0);
 HSSFCell cell = row.createCell((short)0);
 cell.setCellValue(1); // cell A1
 row.createCell((short)1).setCellValue(1.2); //cell A2
 row.createCell((short)2).setCellFormula(“A1+A2”); //cell
A3 is 2.2
 row.createCell((short)3).setCellValue("The next cell is a
boolean, and then a date");
 row.createCell((short)4).setCellValue(true); //cell A5
 row.createCell((short)4).setCellValue(new Date()); //cell
A6 contains todays date
 FileOutputStream out = new FileOutputStream("data1.xls");
 wb.write(out);
 out.close();

Listing 3
 InputStream in = new FileInputStream("data.xls"));
 HSSFWorkbook wb = new HSSFWorkbook(in); // read in
existing workbook
 HSSFSheet sheet = wb.getSheetAt(0);
 HSSFRow row = sheet.getRow(0);
 if (row == null) row = sheet.createRow(0); // check if
row already exists
 HSSFCell cell = row.getCell(0);
 if (cell == null) row.createCell(0); // check if
cell already exits
 cell.setCellValue(2.5); // update
cell value

 FileOutputStream out = new FileOutputStream("data2.xls");
 wb.write(out); // and
write it back out.
 in.close; out.close();

Listing 4
5 Range r = doc.getRange();
6
7 int numSections = r.numSections();
8 for(int x = 0; x < numSections; x++)
9 {
10 Section sect = r.getSection(x);
11 int numPars = sect.numParagraphs();
12 for (int y = 0; y < numPars; y++)
13 {
14 Paragraph par = sect.getParagraph(y);
15 int numRuns = par.numCharacterRuns();
16 for(int z = 0; z < numRuns; z++)
17 {
18 CharacterRun run =
19 par.getCharacterRun(z);
20 }
21 }
22}

Listing 5
1 for (int x = 0; x < numPars; x++)
2 {
3 Paragraph par =
4 range.getParagraph(x);
5
6 if (par.isInTable())
7 {
8 Table t = range.getTable(par);
9
10 //do something with the table…
11
12 x += (t.numParagraphs() – 1);
13 }
14}

Listing 6
import java.io.*;

import org.apache.poi.hwpf.*;
import org.apache.poi.hwpf.usermodel.*;

public class Listing1
{
 public Listing1()
 {
 }

 public static void main(String[] args)
 {
 try
 {

FileInputStream in = new FileInputStream("C:\\blank.doc");
 HWPFDocument doc = new HWPFDocument(in);
 Range range = doc.getRange();

 CharacterProperties props = new
CharacterProperties();
 // Set the font size in half points
 Range currentRange = range;

 // Slowly increase the font size
 for (int x = 8; x <= 64; x += 4)
 {
 // Set the half point size of the font
 props.setFontSize(x);
 currentRange = currentRange.insertAfter(" Hello
World!", props);
 }

 // Display Bold characters
 props.setBold(true);
 currentRange = currentRange.insertAfter(" Bold",
props);

 // Display Italic characters
 props.setItalic(true);
 currentRange = currentRange.insertAfter(" Italic",
props);

 // Display charcters with a Double Strikethrough
 props.setDoubleStrikeThrough(true);
 currentRange = currentRange.insertAfter(" Double
Strikethrough", props);

 // Insert an empty paragraph for readability
 currentRange = currentRange.insertAfter(new
ParagraphProperties(), 0);

 // Reset the character properties
 props = new CharacterProperties();
 props.setFontSize(32);

 // Create a numbered list
 HWPFList list = new HWPFList(true, doc.get-
StyleSheet());
 int listID = doc.registerList(list);

 // Insert a list entry
 currentRange = currentRange.insertAfter(new
ParagraphProperties(), listID, 1, 0);
 props.setIco24(0xff0000);
 currentRange = currentRange.insertAfter(" Blue list
entry", props);

 // Insert another list entry
 currentRange = currentRange.insertAfter(new
ParagraphProperties(), listID, 1, 0);
 props.setIco24(0xff);
 props.setFontSize(38);
 props.setCapitalized(true);
 currentRange = currentRange.insertAfter(" larger red
capitalized", props);

 //Last list entry
 currentRange = currentRange.insertAfter(new
ParagraphProperties(), listID, 1, 0);
 props.setIco24(0);
 props.setCapitalized(false);
 props.setCharacterSpacing(150);
 currentRange = currentRange.insertAfter(" Large char-
acter spacing", props);

 // Write out the document
 FileOutputStream out = new FileOutputStream("C:\\
hello.doc");
 doc.write(out);
 out.flush();
 out.close();

 }
 catch (Throwable t)
 {
 t.printStackTrace();
 }
 }

}

POI

www.SYS-CON.com/JDJ60 August 2004

Labs

ometimes as J2EE applica-
tion developers we feel like we
are in a darkened room. We
know that something is wrong

with our application, but we have no
idea where the problem is. Application
performance management (APM) tools,
such as VERITAS i3 for J2EE, has helped
us “turn on the lights” by enabling us to
see exactly where in the application our
problem really is. Once we identified the
problem, it all flowed from there, as we
could look at how the problem affected
our application from end to end and
make the right decisions on how to fix
the problem. VERITAS i3 APM software is
the only solution we found that provides
such end-to-end application visibility.

VERITAS i3 for J2EE
 Application performance manage-
ment is a continuous process that de-
tects past, current, and future potential
application bottlenecks. It finds where
the problem resides by drilling down
into the application tiers to find the
problem’s root cause, and it improves
application and end-user productivity
by helping IT staff to fix problems proac-
tively, before end users are affected. Key
parts of the VERITAS i3 software suite are
VERITAS Inform, which provides alerts
and reports; VERITAS Insight, which tells
you where an application bottleneck is;
and VERITAS Indepth, which tells you
how to solve the problem.
 VERITAS i3 for J2EE can quickly, ef-
ficiently, and unobtrusively capture the
metrics necessary to appropriately tune
J2EE-based applications. It presents
these important metrics in a manner
that enables crisp communication, rapid
detection, correction, and verification
throughout the application’s life cycle.

Installing and Using VERITAS i3

 VERITAS i3 for J2EE loads from CDs. We
struggled a bit trying to install and config-
ure agents on each tier of the application
and then setting up a central “perfor-
mance warehouse.” Perhaps this was

caused by the fact that our application is
hosted by another group within our par-
ent company. However, the rest of our ex-
perience was, and remains, fantastic. We
began using VERITAS i3 to test our GENIE
holiday (vacation) booking system, and
now use it in deployment. The chief thing
it does is tell us when we are not meeting

desired service levels – such as the time it
takes to serve page content.
 VERITAS i3 for J2EE provides great
visibility into application performance
problems through a GUI that lets you
drill down from an alert to where the
problem lies. For example, it under-
stands response time contributions from

Reviewed by
Rob HalleronVERITAS i3 for J2EE

S

Rob Halleron has been

a technical architect with

 Lunn Poly for the past nine

years. He was involved

 with the definition and

deployment of its J2EE-

and Oracle-based GENIE

holiday booking application.

Lunn Poly is a leisure travel

retailer in the UK with more

than 750 retail stores.

rob_halleron@tui-uk.co.uk

 Figure 1 Overview of the Web, application, and database servers

 Figure 2 The method invocation graph shows that the logon process could be investigated further

Unleash the Power
of the Application Lifecycle

at the 2004 Borland Conference

Unleash the Power
of the Application Lifecycle

at the 2004 Borland Conference

September 11-15, 2004 • San Jose, California
For complete conference details and session information: connect.borland.com/borcon04
Made in Borland® Copyright © 2004 Borland Software Corporation. All rights reserved. Java and all Java-based marks are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All Borland brand and product names are trademarks or
registered trademarks of Borland Software Corporation in the United States and other countries. • 22127.5

The Borland Conference is a premier event for technical education, focusing on all the technologies impacting
software development. With more than 200 technical sessions, you will see how you can facilitate teamwork, enhance
productivity, improve quality, reduce costs, cut maintenance time, and accelerate business flexibility and success. Learn
how the entire development team can create and deploy better software, faster – with the integrated Borland suite of
products for the analyst, architect, developer, tester, deployment group, and manager.

Special discount of up to 50% on select Borland products • Exhibit hall • Free conference proceedings CD • Product Solution tracks covering all Borland
products, including JBuilder,® Delphi,™ Together,® StarTeam,® CaliberRM,™ C#Builder,™ C++BuilderX,™ Optimizeit™ ServerTrace, Borland® Enterprise Server,
Janeva,™ and InterBase® • Interest Area tracks, including ALM, Methods, and Processes; Architecture, Models, and Patterns; Microsoft® .NET Framework;
J2EE™; SOA; emerging technologies; and more!

www.SYS-CON.com/JDJ62 August 2004

Labs

Target Audience: Java application architects/devel-
opers and application managers
Level: Beginner to advanced
Pros:
• Understands response time contributions from

Java servlets, JSP, EJBs, JMS, JNDI, JDBC, and XML
• Correlates activity across Web, multiple JVMs,

and DB servers
• Spans the application cycle (development, test-

ing, deployment)
• Gathers data in real time; stores historical data
• Alerts you in advance of an SLA breach
• Easy-to-use GUI
• Analysis spans entire application, from end

user to storage
• Provides advice on how to solve application-

performance problems
Con:
• Difficult installation process needs to be

streamlined (I’m told this is remedied in v7,
due to ship in Q4 2004)

JDJ Product Snapshot

Java servlets, JSP, EJBs, JMS, JNDI, JDBC,
and XML. It correlates activity across Web,
multiple JVMs, and DB servers. It also has
a SmarTune feature that gives you great
advice on how to fix the problem.
 For example, a third party wrote part of
our application that served up static con-
tent about cruise holidays. These pages
should have been delivered fast, since
they can be stored in cache memory.
Using VERITAS i3 we found the problem
was that the application was making a da-
tabase call for each statement asking for
content. The product allowed us to find
and fix that problem quickly. In another
instance, we were able to identify poorly

performing SQL statements, including
one particular query that was running at
0.5 of a second but was occupying one
entire processor. We were able to tune this
query down to 0.08 of a second.
 Starting at the Insight screen in Figure
1, there is an overview of the three layers
to the system: Web, application, and da-
tabase servers. From the graph on the left,
most of the time is spent in the J2EE layer.
We could investigate that further by choos-
ing the J2EE option on the top menu.
 In Figure 2, the method invocation
graph appears to show two high usage
items but these are part of struts and so
will normally be high. However, the third

item is the logon process and should
be quick, so this could be investigated
further. The JVM etailJVM6 is also more
heavily loaded than the others, which
may indicate a balance problem.
 Clicking on the third item in the
method invocations graphs gives more
details (see Figure 3).
 Clicking on the top item in the list digs
into that particular call to reveal these

 Figure 3 Drilling down gives more detail on the “JVM etailJVM6” logon process

 Figure 4 Looking at routines to find out why it is using up the majority of the response time

350 Ellis Street

Mountain View, CA 94043

Phone: 800 327-2232
 650 527-8000 (outside U.S.)

Web: www.veritas.com

Application Servers: BEA WebLogic Server 5.1,
6.0, 6.1 ,7.0, 8, 8.1; IBM WebSphere 3.5.x, 4.x,
5.x; Oracle 9iAS 9.0.2, 9.0.3; Tomcat 3.x, 4.x;
Macromedia JRun 3.x; Sun Java Enterprise System

Operating Systems: Sun Solaris 2.6, 7, 8, 9; IBM
AIX 4.3.3, 5.1, 5.2; HP-UX 11.0,11i; Windows NT
SP6a, 2000 SP3; Linux Red Hat 7.2, 8 Advanced
Server 2.1; SuSE Linux 8.0, Linux S/390

Pricing: Based on number of processors and server
class.

Sun Servers (two Web servers: 2 CPU Sun
Enterprise 280R; two application servers: 4 CPU
Sun V480; database server: F15K 6 CPU domain)
running the Solaris 8 operating system

VERITAS Software Corporation

Specifications

Test Environment

63August 2004www.SYS-CON.com/JDJ

sub calls (see Figure 4). Most of the time is spent local to the routine com.
tuiuk.etail.channel.shop.agentlogon.servlet.AgentLogonServlet.service.
A developer can now investigate why it is using up the majority of the
response time.
 If we take a step back to Figure 1, we can investigate the top Oracle state-
ment in the graph. Clicking on the top item in the bar graph and then the
Oracle tab in the top menu bar takes us to the screen in Figure 5.
 We can now launch Indepth for Oracle to determine what the statement is.
As you can see in Figure 6, this is a very large INSERT statement that is part of
our content-refresh process, so it’s not unreasonable for it to take a while to
process; nothing to worry about there.

Summary
 VERITAS i3 for J2EE is an excellent tool to diagnose and fix J2EE appli-
cation-performance issues at any point in the application life cycle.
Its ability to drill down and find the root cause of your performance
issue is superb. If you need end-to-end visibility into your application,
this is the ideal solution.

 Figure 5 The highest-usage Oracle statement

 Figure 6 The INSERT statement takes a while to process

Advertiser Index

General Conditions: The Publisher reserves the right to refuse any advertising not meeting the standards
that are set to protect the high editorial quality of Java Developer’s Journal. All advertising is subject to
approval by the Publisher. The Publisher assumes no liability for any costs or damages incurred if for any
reason the Publisher fails to publish an advertisement. In no event shall the Publisher be liable for any
costs or damages in excess of the cost of the advertisement as a result of a mistake in the advertisement
or for any other reason. The Advertiser is fully responsible for all financial liability and terms of the contract
executed by the agents or agencies who are acting on behalf of the Advertiser. Conditions set in this docu-
ment (except the rates) are subject to change by the Publisher without notice. No conditions other than
those set forth in this “General Conditions Document” shall be binding upon the Publisher. Advertisers (and
their agencies) are fully responsible for the content of their advertisements printed in Java Developer’s
Journal. Advertisements are to be printed at the discretion of the Publisher. This discretion includes the posi-
tioning of the advertisement, except for “preferred positions” described in the rate table. Cancellations and
changes to advertisements must be made in writing before the closing date. “Publisher” in this “General
Conditions Document” refers to SYS-CON Publications, Inc.

 Altova www.altova.com 978-816-1600 9

 AMD developer.amd.com 408-749-4000 31

 Axalto www.simagine.axalto.com 888-343-5773 49

 Axosoft www.axosoft.com 800-653-0024 57,65

 Borland www.go.borland.com/j6 831-431-1000 7

 Borland Conference 2004 www.connect.borland.com/borcon04 61

 ClearNova www.clearnova.com/thinkcap 770-442-8324 23

 Compuware www.compuware.com 35

 Enerjy www.enerjy.com 866-598-9876 17

 Google www.google.com/cacm 650-623-4000 47

 Identify Software www.identify.com 11

 InferData www.inferdata.com/jdjmag 888-211-3421 25

 InterSystems www.intersystems.com/match6 617-621-0600 4

 Jinfonet www.jinfonet.com/yeehaw 301-838-5560 43

 LinuxWorld Conference & Expo www.linuxworldexpo.com 508-424-4847 58-59

Northwoods Software Corporation www.nwoods.com/go 800-434-9820 51

 Oracle www.oracle.com/platform 800-633-0753 Cover II

 Parasoft Corporation www.parasoft.com/soaptest 888-305-0041 13

 Quest Software, Inc. http://www.quest.com/jdj 800-663-4723 Cover IV

 Rascal Software www.rascalsoftware.com/java 206-624-7300 15

 ReportingEngines www.reportingengines.com/download/f1ere.jsp 888-884-8665 19

 Scientific Toolworks, Inc. www.scitools.com 37

 Sleepycat Software www.sleepycat.com/bdbje 510-597-2128 27

 Software FX www.chartfx.com 800-392-4278 Cover III

 Tangosol www.tangosol.com 617-623-5782 21

WebAppCabaret http://www.webappcabaret.com/jdj.jsp 866-256-7973 41

 Web Services Edge 2005 East www.sys-con.com/edge 201-802-3045 39

 Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

www.SYS-CON.com/JDJ64 August 2004

Quest Manages J2EE Performance Issues
with PerformaSure 3.5
(San Francisco) – Quest Software, Inc., a
provider of application, database, and
Windows management solutions, has an-
nounced the release of Quest PerformaSure
3.5, an application-centric diagnostics
tool that helps companies tune, diagnose,
and resolve performance issues in multitier
J2EE applications. Featuring new support
for J2EE application servers from Oracle,
JBoss, and Apache, and continued support
for BEA WebLogic and IBM WebSphere,
Quest PerformaSure 3.5 enables compa-
nies to utilize its diagnostics capabilities to
identify and resolve performance issues in
complex J2EE applications, regardless of
the application servers they choose.
www.quest.com

Sun Releases Java Platform Upgrade
(Santa Clara, CA) – Sun Microsystems has
announced a significant upgrade to the
Java platform and programming language.
Known as Project Tiger, the beta release of
the Java 2 Platform Standard Edition (J2SE)
5.0 aims to offer easier development, new
application monitoring and management
features, a dedicated focus on rich client
support for the PC desktop, and improved
performance.
 The J2SE 5.0 software development kit
(JDK) includes tools such as compilers and
debuggers necessary for developing applets
and applications and the Java Runtime
Environment (JRE).
 Sun also announced that Java Specifica-
tion Request (JSR) 176 has reached final
draft through the Java Community Process
(JCP). J2SE 5.0 is based upon JSR 176.
www.sun.com

DataDirect Technologies to Enhance Sun’s
Data Connectivity Capabilities
(Bedford, MA) – DataDirect Technologies,
a provider of components for connecting
software to data, has announced that Sun
Microsystems has selected its DataDirect
Connect for JDBC suite of drivers to expand
the functionality and performance of the
Sun Java Studio Creator offering and the Sun
Java System Application Server. DataDirect
Technologies’ JDBC components will enhance
Sun’s data connectivity capabilities in both
development and deployment environments.
www.datadirect.com

ILOG Acquires JLOOX Business from eNGENUITY
(Paris) – ILOG, a provider of enterprise-class
software components and services, has an-
nounced it is acquiring the intellectual property
and other selected assets of the JLOOX product
line for USD 1.7 million from eNGENUITY
Technologies Inc., a Montreal, Canada-based
maker of software. JLOOX is used for the devel-
opment of advanced visual applications.
 In addition to JLOOX intellectual property,
ILOG will acquire the JLOOX customer base
and prospects. ILOG also plans to enter into a
three-year OEM agreement with eNGENUITY
that will allow eNGENUITY to continue to use
ILOG’s visualization technology in its STAGE
products.
www.ilog.com

Borland, eBay, and PayPal to Expand
Opportunities for Java Developers
(San Francisco, CA) – eBay and Borland Soft-
ware Corporation have announced an agree-
ment to provide users of Borland JBuilder with
tools and resources that enable them to create
Java applications for the eBay and PayPal
platforms and communities.

 Through the joint distribution agreement,
Borland will now make the eBay and PayPal
Software Development Kits (SDKs) avail-
able to JBuilder developers. The agreement
provides the extensive JBuilder developer
community with access to code examples and
technical resources that are designed to help
them build highly available Java applications
that tap into the eBay marketplace as well as
PayPal’s online payment services.
www.borland.com
http://developer.ebay.com
www.paypal.com/pdn

Oracle Application Server 10g Enhances Inte-
gration with Certification of B2B Standards
(Redwood Shores, CA) – Oracle Application
Server 10g is certified to support all leading
business-to-business (B2B) standards, en-
abling organizations to comply with industry
mandates required by companies such as
Cisco, Intel, Wal-Mart, Home Depot, and
Lowe’s.
 By enhancing support for standards such
as EDI over the Internet-AS2 (EDIINT AS2)
and RosettaNet, Oracle Application Server 10g
enables companies in the high technology,
manufacturing, retail, and consumer pack-
aged goods industries to connect to business
partners’ supply chains using B2B standards.
As a result, organizations can meet integration
mandates set forth by Cisco, Intel, and Wal-
Mart by using Oracle Application Server 10g’s
pretested connectivity tools and integration
features.
www.oracle.com

Zero G Introduces SolutionArchitect
(San Francisco / Grapevine, TX) – Zero G
Software has introduced SolutionArchitect, a
software installation and configuration solu-
tion for building ready-to-deploy software
packages using the new Solution Installation
packaging standard. Designed to improve the
process of packaging software, SolutionArchi-
tect produces self-configuring and self-heal-
ing software packages, and can combine
these packaged components together into
complete, customized software solutions that
can then be deployed using Zero G’s multi-
platform application deployment solution
InstallAnywhere.
www.zerog.com

Pressroom

Industry News

(Los Gatos, CA) – Fiorano Software, Inc., a provider of standards-based integration, business-process management,

and enterprise messaging software and solutions, has announced that its Business Integration Suite has been

chosen by the Editors of Network Computing (NWC) Labs as the best product for the mid-market EAI segment.

 Fiorano’s Integration Suite is built on a second-generation Enterprise Service

Bus (ESB), in which the logical application design is mapped directly to the

physical implementation, making the development process more intuitive and

easier than that of conventional integration suites.

www.fiorano.com

Fiorano Is Leading EAI Product for SMB’s Report Network Computing Labs

www.SYS-CON.com/JDJ66 August 2004

he network effect is the impetus
behind today’s software plat-
forms, but a balance must be
struck between homogeneous

vulnerability and fractured inefficiency.
Comparing J2EE to .NET shows clear
advantages for J2EE through vendor
diversity, portability, standardization
community, educational opportunity,
language commonality, and security.
.NET’s attempt to replicate J2EE is shal-
low, providing technological similarity
in a disconnected and proprietary
package.
 Broadly speaking, the network effect
is the growth experienced by networks
due to the feedback loop induced by

the increasing value of joining a grow-
ing network. Consider fax technology.
It has been successful because the net-
work of fax machines, connected by the
telephone system, communicates reli-
ably – thanks to a common standard.
The adoption of fax machines showed
runaway growth because, in a sense,
the value of a fax machine increased
as the size of the entire fax network
increased.
 Such networks may start slowly,
but when they do succeed the effect
is dramatic. Clearly, interoperability is
crucial to their success. Why not guar-
antee interoperability by insisting on
a single manufacturer, a fax machine
monopoly?
 The reasons against this have been
repeatedly established: an absence
of competition leads to lower quality,
higher prices, a lack of innovation, and
a vulnerable system. The free mar-
ket demands a diversity of suppliers,

unified through common standards.
This is not only an economic principle;
looking at software platforms, we see
the network effect on many levels. Let's
examine how J2EE and .NET compare.
 Everything derives from the human
network of education, and both J2EE
and .NET technologies are excellent
starting points for an education in
computer science. The difference is
that only J2EE is suitable for a formal
curriculum. Unlike the .NET unmain-
tained prototype in “Shared Source,”
J2EE code is freely available in its
entirety for educational and research
purposes. Academic integrity is pre-
served only when full examination and

discourse are encouraged.
 Isn’t .NET better for teaching? With
its Common Language Infrastructure,
it can be used to teach any language.
However, this is a dangerous illusion.
.NET reduces the interesting differ-
ences of programming languages to a
syntactic tower of Babel. Exposure to a
variety of languages is an essential part
of every education, but they must be
seen in their true form to be of value. In
contrast, Java makes no such claim of
universality; it simply unites develop-
ers with a common language, allowing
them to effectively share source code
and ideas. The network of developers
is connected through Java, not through
compiled bytecode.
 Less abstract is the network of
middleware, virtual machine, and op-
erating system suppliers. Once again,
the free market demands that this be
a diverse collection. J2EE, through
its focus on portability, provides an

integration point that gives developers
and deployers choices at every stage.
In opposition, .NET holds up a single
supplier, eager to collect high taxes and
exercise control.
 For the long term, the most impor-
tant network is that of the platform de-
velopers. How do people work together
to define the standards and technolo-
gies that make up a platform? The Java
Community Process may not be as
fair or as open as some would like, but
fundamentally it does provide a way for
developers and vendors to reach a con-
sensus and participate in the evolution
of J2EE. In contrast, platforms imposed
by dictatorship are technology mo-

nopolies, leading to lower quality and
lost innovation. Herein lies the tragic
flaw of .NET. Publishing a document
and declaring it to be a standard omits
the peer-refinement process, and the
technology becomes little more than a
tool of its owner.
 Finally, let’s turn to the unfortunate
reality of our somewhat hostile world.
Billions of years of evolution have dem-
onstrated the catastrophes that await
homogeneous systems with their rep-
licated single points of failure. Today
we see this in the explosive growth of
software viruses. Some are merely reck-
less, some have criminal intent, but all
are destructive. J2EE provides a system
designed from the ground up for se-
curity and is deployable on a substrate
that is robust through its diversity. The
foundation of the alternative is well
traveled by worms. This too serves as a
lesson that the network effect must be
approached wisely.

@ the Backpage

Ted Goddard

Unified Diversity

T

Ted Goddard is a

senior software

architect at ICEsoft.

Prior to ICEsoft,

he held positions at

Java Software, Sun

Microsystems, in device

management, and as

an XML architect at

Wind River Systems.

 Ted received his PhD

in mathematics in 1996

from Emory University in

Atlanta, Georgia.

ted.goddard@icesoft.com

For the long term, the most important network is that of the
platform developers. How do people work together to define the

standards and technologies that make up a platform? ”
“

SPEND LESS TIME PROBLEM SOLVING… AND MORE TIME DEVELOPING APPLICATIONS.

Join The Thousands of Companies Improving Java Application

Performance with Quest Software.

Whether it’s a memory leak or other performance issues,

Quest Software’s award-winning Java products — including

JProbe® and PerformaSure™ — help you spend less time trouble-

shooting and more time on the things that matter. Quest’s Java

tools will identify and diagnose a problem all the way down to

the line of code, so you no longer have to waste time pointing

fingers or guessing where the problem lies. Maximize your

team’s productivity with Quest Software by downloading a free

eval today from http://www.quest.com/jdj.

PerformaSure — a system-wide performance
diagnostic tool for multi-tiered J2EE applications
running in test or production environments.

JProbe — a performance tuning toolkit
for Java developers.

© 2004 Quest Software Inc., Irvine, CA 92618 Tel: 949.754.8000 Fax: 949.754.8999

